Skip to main content
Log in

Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A persistent challenge in multi-scale modeling of materials is the prediction of plastic materials behavior based on the evolution of the dislocation state. An important step towards a dislocation based continuum description was recently achieved with the so called continuum dislocation dynamics (CDD). CDD captures the kinematics of moving curved dislocations in flux-type evolution equations for dislocation density variables, coupled to the stress field via average dislocation velocity-laws based on the Peach-Koehler force. The lowest order closure of CDD employs three internal variables per slip system, namely the total dislocation density, the classical dislocation density tensor and a so called curvature density.

In the current work we present a three-dimensional implementation of the lowest order CDD theory as a materials sub-routine for Abaqus® in conjunction with the crystal plasticity framework DAMASK. We simulate bending of a micro-beam and qualitatively compare the plastic shear and the dislocation distribution on a given slip system to results from the literature. The CDD simulations reproduce a zone of reduced plastic shear close to the surfaces and dislocation pile-ups towards the center of the beam, which have been similarly observed in discrete dislocation simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kröner and G. Rieder, Z. Phys. 145, 424–429 (1956).

    Article  Google Scholar 

  2. J. F. Nye, Acta Metall. 1 (2), 153–162 (1953).

    Article  CAS  Google Scholar 

  3. T. Mura, Philos. Mag. 8 (89), 843–857 (1963).

    Article  Google Scholar 

  4. A. Acharya and A. Roy, J. Mech. Phys. Solids 54 (8), 1687 – 1710 (2006).

    Article  Google Scholar 

  5. R. Sedlacek, J. Kratochvil, E. Werner, Philos. Mag. 83 (31–34), 3735–3752 (2003).

    Article  CAS  Google Scholar 

  6. T. Hochrainer, M. Zaiser, P. Gumbsch, Philos. Mag. 87, 1261–1282 (2007).

    Article  CAS  Google Scholar 

  7. T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, J. Mech. Phys. Solids, 63, 167–178 (2014)

    Article  Google Scholar 

  8. T. Hochrainer, Philos. Mag, 95, 1321–1367 (2015)

    Article  CAS  Google Scholar 

  9. A. Ebrahimi, M. Monavari, T. Hochrainer, MRS Proceedings, 1651, mrsf13-1651-kk06-05T (2014).

  10. S. Sandfeld and G. Po, Model. Simul. Mater. Sci. Eng. 23, p. 085003 (2015)

    Article  Google Scholar 

  11. F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe, Procedia IUTAM 3, 3–10 (2012).

    Article  Google Scholar 

  12. T. Mura, Micromechanics of defects in solids (Kluwer Academic Publisher Group, Dordrecht, The Netherlands, 1982)

    Book  Google Scholar 

  13. C. Motz, D. Weygand, J. Senger, P. Gumbsch, Acta Mater., 56, 1942-1955R (2008).

    Article  CAS  Google Scholar 

  14. I. Groma, F. F. Csikor, M. Zaiser, Acta Mater. 51, 1271–1281 (2003)

    Article  CAS  Google Scholar 

  15. J.P. Hirth, J. Lothe, Theory of dislocations, (McGraw-Hill Book Comp, New York, 1968)

    Google Scholar 

  16. S. Sandfeld, T. Hochrainer, M. Zaiser, P. Gumbsch, Philos. Mag, 90, 1–32 (2010)

    Article  Google Scholar 

  17. S. Sandfeld, T. Hochrainer, M. Zaiser, P. Gumbsch, J. Mater. Res., vol. 26, 623–632(2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A., Hochrainer, T. Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam. MRS Advances 1, 1791–1796 (2016). https://doi.org/10.1557/adv.2016.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.75

Navigation