Skip to main content
Log in

Quantifying the Impact of Material-Model Error on Macroscale Quantities-of-Interest Using Multiscale a Posteriori Error-Estimation Techniques

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximate weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. An adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Wei, J. Mazumder, T. DebRoy, Scientific Reports, 5, 16446 (2015).

    Article  CAS  Google Scholar 

  2. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, J. Mater. Proc. Tech. 213, 606–613 (2013).

    Article  CAS  Google Scholar 

  3. R. Unnikrishnan, K.S.N. Satish Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, S.G. Sapate, Mater. Char. 93, 10–23 (2014).

    Article  CAS  Google Scholar 

  4. K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625, 221–229 (2015).

    Article  CAS  Google Scholar 

  5. G. Bouche, J.L. Béchade, M.H. Mathon, L. Allais, A.F. Gourgues, L. Nazé, J. Nuclear Mat. 277, 91–98 (2000).

    Article  CAS  Google Scholar 

  6. J.T. Oden, S. Prudhomme, J. Comp. Phys. 182, 496–515 (2002).

    Article  Google Scholar 

  7. T. Zohdi, J. Oden, G. Rodi, Comput. Methods in Appl. Mech. Eng. 138(1–4), 273–298 (1996).

    Article  Google Scholar 

  8. J. Oden, S. Prudhomme, D. Hammerand, M. Kuczma, Comput. Methods in Appl. Mech. Eng. 190(49–50), 6663–6684 (2001).

    Article  Google Scholar 

  9. A. Romkes, J. Oden, K. Vemaganti, Mechanics of Materials 38(8–10), 859–872 (2006).

    Article  Google Scholar 

  10. J. Oden, K. Vemaganti, J. Comp. Phys. 164(1), 22–47 (2000).

    Article  CAS  Google Scholar 

  11. K. Vemaganti, J. Oden, Comput. Methods in Appl. Mech. Eng.190(46–47), 6089–6124(2001).

    Article  Google Scholar 

  12. H. Ledbetter, Physica Status Solidi (a) 85, 89–96 (1984).

    Article  CAS  Google Scholar 

  13. J. Bishop, J. Emery, R. Field, C. Weinberger, D. Littlewood, Comput. Methods in Appl. Mech. Eng. 287, 262–289 (2015).

    Article  Google Scholar 

  14. Sierra/Solid Mechanics 4.22 User’s Guide, Technical Report SAND2011-7597, Sandia National Laboratories, 2011.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, J.A., Bishop, J.E. Quantifying the Impact of Material-Model Error on Macroscale Quantities-of-Interest Using Multiscale a Posteriori Error-Estimation Techniques. MRS Advances 1, 2789–2794 (2016). https://doi.org/10.1557/adv.2016.524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.524

Navigation