Skip to main content
Log in

Effect of Helium Accumulation on the Spent Fuel Microstructure

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The rapid release of activity when water firsts contacts the spent fuel surface in disposal will depend on the pellet microstructure at the arrival time of water in the container. Research performed on spent fuel evolution in a closed system has shown that the evolution of microstructure under disposal conditions should be governed by helium behavior with the cumulated α{decay damage. The evolution of fission gas bubble characteristics under repository conditions has been assessed. In UO2 fuels with a burnup of 47.5 GWd/t, the pressure of fission gas bubbles with the input of helium atoms should not reach the critical bubble pressure, thus micro-cracking in grains is not expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ferry, C. Poinssot, V. Broudic, C. Cappelare, L. Desgranges, P. Garcia, C. Jégou, P. Lovera, P. Marimbeau, J.P. Piron, A. Poulesquen, D. Roudil, J.M. Gras, P. Bouffioux, “Synthesis on the spent fuel long term evolution,” CEA Report, CEA- R-6084, 2005, p.257.

  2. P. Losonen, J. Nucl. Mat. 280, 56–72 (2000).

    Article  CAS  Google Scholar 

  3. H.J. Matzke and T. Wiss, Radiation damage in nuclear material, ITU annual report, EUR 19812, 30–43 (2000).

    Google Scholar 

  4. A.G. Evans, R.W. Davidge, J. Nucl. Mat. 33, 249–260 (1969).

    Article  CAS  Google Scholar 

  5. R. B. Stout, C. Ferry, C. Poinssot, J.P. Piron, “Estimations of failure pressures in spent fuels from actinide alpha decay helium transported to fission gas bubbles,”10th Internat. Conf. on Environmental Remediation and Radioactive Waste Management, Sept2005, Glasgow, Scotland.

  6. J. Spino, D. Baron, M. Coquerelle, A.D. Stalios, J. Nucl. Mat. 256, 189–196 (1998).

    Article  CAS  Google Scholar 

  7. J. Spino, K. Vennix, M. Coquerelle, J. Nucl. Mat., 231 (1996).

  8. J. Spino, M. Coquerelle, D. Baron, “Microstructure and fracture toughness characterization of irradiated PWR fuels in the burnup range of 40–67 GWd/t,” Proceedings of the technical Commitee meeting IAEA on Advances in fuel technology (1996).

  9. R.O.A. Hall, M.J. Mortimer, D.A. Mortimer, J. Nucl. Mat. 148, 237–256 (1987).

    Article  CAS  Google Scholar 

  10. C. Ronchi, J.P. Hiernaut, J. Nucl. Mat. 325, 1–12 (2004).

    Article  CAS  Google Scholar 

  11. D. Roudil, C. Jégou, X. Deschanels, S. Peuget, C. Raepsaet, J.P. Gallien, V. Broudic, in Mat. Res. Sym. Proc. Vol. 932, pp. 529–536, (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferry, C., Piron, JP. & Stout, R. Effect of Helium Accumulation on the Spent Fuel Microstructure. MRS Online Proceedings Library 985, 501 (2006). https://doi.org/10.1557/PROC-985-0985-NN05-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-985-0985-NN05-01

Navigation