Skip to main content
Log in

Texture Evolution of Lithium Fluoride Thin Films by Nucleation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have used a transmission electron microscope (TEM)-based method to extract grain size information for <111> surface normal grains in lithium fluoride (LiF) thin films, and applied this to analyze textures as a function of substrate temperature and annealing time. The size distributions of grains diffracting into the (111)+(200) and (220) rings were measured separately using dark field (DF) TEM images. From these data, we deduce the size distribution of <111> surface normal grains based on the assumption that only 3 principal textures (100), (110) and (111) exist in films. The (111) texture formation was also observed by x-ray diffraction (XRD). For all deposition and annealing conditions, the grain size data can be matched to lognormal distributions within an acceptable error, but at longer annealing times the distribution becomes bimodal. A novel feature of the LiF films is that the (111) texture component strengthens with annealing and substrate temperature, through the nucleation of new grains rather than the growth of existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Henley, M. N. R. Ashfold, S. R. J. Pearce, Appl. Surf. Sci. 217, 68 (2003).

    Article  CAS  Google Scholar 

  2. F. Somma, A. Ercoli, S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, J. Vac. Sci. Technol. A 13, 1013 (1995).

    Article  CAS  Google Scholar 

  3. T. T. Basiev, S. B. Mirov, V. V. Osiko, IEEE J. Quantum Electronics 24, 1052 (1988).

    Article  CAS  Google Scholar 

  4. H. Gu, L. Qi, L. Wan, Opt. Comm. 63, 237 (1988).

    Article  Google Scholar 

  5. A. Perea, J. Gonzalo, C. N. Afonso, S. Martelli, R. M. Montereali, Appl. Surf. Sci. 138–139, 533 (1999).

  6. F. Golek, P. Mazur, Surf. Sci. 541, 173 (2003).

    Article  CAS  Google Scholar 

  7. J. A. Floro, C. V. Thompson, R. Carel, P. D. Bristowe, J. Mater. Res. 9, 241 (1994).

    Article  Google Scholar 

  8. C. V. Thompson, R. Carel, Mater. Sci. Eng. B 32, 211 (1995).

    Article  CAS  Google Scholar 

  9. R. M. Montereali, B. Baldacchini, S. Martelli, L. C. S. Carmo, Thin Solid Films 196, 75 (1991).

    Article  CAS  Google Scholar 

  10. U. Kaiser, N. Kaiser, P. Weiβbrodt, U. Mademann, E. Hacker, H. Mϋller, Thin Solid Films 217, 7 (1992).

    Article  CAS  Google Scholar 

  11. G. Baldacchini, M. Cremona, S. Martelli, R. M. Montereali, L. C. S. Carmo, Phys. Stat. Sol. (a) 151, 319 (1995).

    Article  CAS  Google Scholar 

  12. R. W. Hertzberg, “Deformation and fracture mechanics of engineering materials”, (Wiley, New York, 1976).

  13. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197, 117 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., King, A.H. Texture Evolution of Lithium Fluoride Thin Films by Nucleation. MRS Online Proceedings Library 979, 1119 (2006). https://doi.org/10.1557/PROC-979-0979-HH11-19

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-979-0979-HH11-19

Navigation