Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T14:27:47.964Z Has data issue: false hasContentIssue false

Multipolar Expansion Methods for Coarse Grained Force Fields

Published online by Cambridge University Press:  26 February 2011

Sheng Chao*
Affiliation:
National Taiwan University
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

Current large scale atomistic simulations remain too computationally demanding to be generally applicable to industrial and bioengineering materials. It is desirable to develop multiscale modeling algorithms to perform efficient and informative mesoscopic simulations. Here we present a multipolar expansion method to construct coarse grained force fields (CGFF) for polymer nanostructures and nanocomposites. This model can effectively capture the stereochemical response to anisotropic long-range interactions and can be systematically improved upon adding higher order terms. The coarse-graining procedure forms the basis to perform a hierarchy of multiscale simulations starting with the quantum chemistry calculations to coarse grained molecular dynamics, hopefully toward continuum modeling. We have applied this procedure to molecular clusters such as alkane, benzene, and fullerene. For liquid alkane, molecular dynamics simulations using the CGFF can reproduce the pair distribution functions using atomistic force fields. Molecular mechanics simulations using the CGFF can well reproduce the energetics of benzene clusters from quantum chemistry electronic structure calculations. Subtle anisotropy in the interaction potentials of the fullerene dimer using the Brenner force field can also be well represented by the model. It is promising this procedure can be standardized and further extended.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)