Skip to main content
Log in

Experimental verification of the need for either jj or intermediate coupling in the 5f states of plutonium

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Here, we demonstrate the power of electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM) to investigate the electronic structure plutonium. Using EELS, TEM, and synchrotron-radiation-based X-ray absorption spectroscopy (XAS), we provide the first experimental evidence that Russell-Saunders (LS) coupling fails for the 5f states of Pu. These results support the assumption that only the use of jj or intermediate coupling is appropriate for the 5f states of Pu. EELS experiments were performed in a TEM and are coupled with image and diffraction data, therefore, the measurements are completely phase specific. It is shown that EELS in a TEM may be used to circumvent the difficulty of producing single-phase or single-crystal samples due to its high spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.C. Albers, Nature 410, 759 (2001).

    Article  CAS  Google Scholar 

  2. S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature 410, 793 (2001).

    Article  CAS  Google Scholar 

  3. G. Lander, Science 301, 1057 (2003).

    Article  CAS  Google Scholar 

  4. X. Dai et al., Science 300, 953 (2003).

    Article  CAS  Google Scholar 

  5. J. Wong et al., Science 301, 1078 (2003).

    Article  CAS  Google Scholar 

  6. J.L. Sarrao et al., Nature 420, 297 (2002).

    Article  CAS  Google Scholar 

  7. I. Opahle, P.M. Oppeneer, Phys. Rev. Lett. 90, 157001 (2003).

    Article  CAS  Google Scholar 

  8. T. Maehiro et al., Phys. Rev. Lett. 90, 207007 (2003).

    Article  Google Scholar 

  9. S.S. Hecker, MRS Bulletin 26, 872 (2001) and reference therein.

    Article  Google Scholar 

  10. S.Y. Savrasov and G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000).

    Article  CAS  Google Scholar 

  11. P. Söderlind, Europhys. Lett. 55, 525 (2001).

    Article  Google Scholar 

  12. R. Eisberg and R. Resnick, “Quantum Physics,” John Wiley and Sons, NY, 1974

    Google Scholar 

  13. C. Kittel, “Introduction to Solid State Physics,” 5th Ed., John Wiley and Sons, NY, 1976, page 442.

    Google Scholar 

  14. H.L. Skrivers, O.K. Andersen, and B. Johansson, Phys. Rev. Lett. 41, 42 (1978).

    Article  Google Scholar 

  15. Cooper et al. “Hybridization-induced anisotropy in cerium and actinide systems” in Handbook on the physics and chemistry of the actinides, ed. A.J. Freeman and G.H. Lander, Elsevier Science, Vol. 2, 1985.

  16. R.F. Egerton, “Electron energy-loss spectroscopy in the electron microscope” 2nd Ed., Plenum Press, NY, 1996, page 221.

    Book  Google Scholar 

  17. J.G. Tobin et al., Phys. Rev. B 68, 115109 (2003).

    Article  Google Scholar 

  18. M. Aono et al., Solid State. Commun. 39, 1057 (1981).

    Article  CAS  Google Scholar 

  19. M. Cukier et al., J. Phys. (Paris) 39, L315 (1978).

    Article  Google Scholar 

  20. L. Havela et al., Phys. Rev. B 65, 235118 (2002).

    Article  Google Scholar 

  21. “Electronic Structure of Solids: Photoemission Spectra and Related Data,” ed. A. Goldmann and E. Koch, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 23, Springer-Verlag Berlin, Germany, 1994. For rare earths: Subvolume 23a, Chapter 2.5 by W.D. Schneider. For actinides: Subvolume 23b, Chapter 2.8 by J.R. Naegale.

  22. J.L. Dehmer et al., Phys. Rev. Lett. 26, 1521 (1971).

    Article  CAS  Google Scholar 

  23. A.F. Starace, Phys. Rev. B 5, 1773 (1972).

    Article  Google Scholar 

  24. J. Sugar, Phys. Rev. B 5, 1785 (1972).

    Article  Google Scholar 

  25. L.I. Johansson et al., Phys. Rev. B 21, 1408 (1980).

    Article  CAS  Google Scholar 

  26. P. Söderlind, Thesis (Uppsala, 1994) page 83.

  27. Y. Baer and J.K. Lang, Phys. Rev. B 21, 2060 (1980).

    Article  CAS  Google Scholar 

  28. M. Pénicaud, J. Phys: Condens. Matter. 9, 6341 (1997).

    Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-Eng-48, with support from Lawrence Berkeley National Laboratory (Contract No. DE-AC03-76SF00098). The Advanced Light Source and the Spectromicroscopy Facility (Beamline 7.0) have been built and operated under funding from the Office of Basic Energy Science at Department of Energy. The authors wish to thank Gil Gallegos for Ce samples, Jason Lashley and Michael Blau for the Pu samples, and J. Terry, J.D. Farr, T. Zocco, K. Heinzelman, and E. Rotenberg for help with the Pu data collection at the Advanced Light Source.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, K.T., Wall, M.A., Schwartz, A.J. et al. Experimental verification of the need for either jj or intermediate coupling in the 5f states of plutonium. MRS Online Proceedings Library 802, 66–74 (2003). https://doi.org/10.1557/PROC-802-DD2.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-802-DD2.6

Navigation