Skip to main content
Log in

Self-Organized Criticality in Nanotribology

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present experimental results on dry friction, which are consistent with the hypothesis that the stick-slip mechanism for energy release is described by self-organized criticality. The data, obtained with an Atomic Force Microscope set to measure lateral forces– examines the variation of the friction force as a function of time – or sliding distance. The materials studied were nominally flat surfaces of mica, quartz, silica and steel. An analysis of the data shows that the probability distribution of slip sizes follows a power law. Our data strongly supports the existence of self-organized criticality for nano-stick-slip in dry sliding friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.L. Turcotte, Rep. Prog. Phys. 62, 1377 (1999)

    Article  Google Scholar 

  2. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  CAS  Google Scholar 

  3. R. Hallgass, V. Loreto, O. Mazzella, G. Paladin, L. Pietronero, Phys. Rev. E 56, 1346 (1997)

    Article  CAS  Google Scholar 

  4. F.-J. Elmer, Phys. Rev. E 56, R6225 (1997)

    Article  CAS  Google Scholar 

  5. R.V. Solé, S. Manrubia, Phys. Rev. E 54, R42 (1996)

    Article  Google Scholar 

  6. V. Plerou, P. Gopikrishnan, L.A. Nunes Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60 (1999)

  7. O. Peters, C. Hertlein, K. Christensen, Phys. Rev. Lett. 88, 018701–1 (2002)

    Article  Google Scholar 

  8. F. Slanina, Phys. Rev. E 59, 3947 (1999)

    Article  CAS  Google Scholar 

  9. S. Ciliberto, C. Laroche, J. Phys. I France 4, 223 (1994)

    Article  Google Scholar 

  10. D.P. Vallette, J.P. Gollub, Phys. Rev. E 47, 820 (1993)

    Article  CAS  Google Scholar 

  11. F.R. Zypman, J. Ferrante, M. Jansen, K. Scanlon and P. Abel, J. Phys.: Condens. Matter 15, L191–L196 (2003)

    CAS  Google Scholar 

  12. F.P. Bowden, D. Tabor, “The friction and lubrication of solids”, Oxford at the Clarendon Press (1964)

  13. M.R. Sørensen, K.W. Jacobsen, P. Stoltze, Phys. Rev. B 53, 2101 (1996)

    Article  Google Scholar 

  14. J.-J. Wu, Trans. ASME 123, 872 (2001)

    Article  Google Scholar 

  15. S. Kopta, M. Salmeron, J. Chem. Phys. 113, 8249 (2000)

    Article  CAS  Google Scholar 

  16. R.W. Carpick, M. Salmeron, Chem. Rev. 97, 1163 (1997)

    Article  CAS  Google Scholar 

  17. R.W. Carpick, M. Salmeron, Chem. Rev. 97, 1163 (1997)

    Article  CAS  Google Scholar 

  18. R. Sánchez, D.E. Newman, B.A. Carreras, Phys. Rev. Lett. 88, 068302–1 (2002)

    Article  Google Scholar 

  19. K. Christensen, Z. Olami, J. Geophys. Res. 97, 8729 (1992)

    Article  Google Scholar 

  20. H.J. Jensen, “Self-Organized Criticality”, Cambridge University Press, Cambridge, New York, Melbourne (1998)

    Book  Google Scholar 

  21. A. Buldum, S. Ciraci, I.P. Batra, Phys. Rev. B 57, 2468 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, M., Ferrante, J., Schilowitz, A. et al. Self-Organized Criticality in Nanotribology. MRS Online Proceedings Library 782, 51 (2003). https://doi.org/10.1557/PROC-782-A5.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-782-A5.1

Navigation