Skip to main content
Log in

The Behavior of Copper Nanoparticle Chain Aggregates Under Strain – A Molecular Dynamics Approach

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanoparticle chain aggregates (NCA) serve as reinforcing fillers that are combined with molecular polymers to produce nano-composite materials, e.g. carbon black in rubber. The reinforcing mechanism due to the incorporation of nanoparticle aggregates is not well understood. Molecular dynamics (MD) computer simulations are employed to investigate the behavior of nanoparticle chain aggregates under strain. The interaction potential used is that of Cu obtained with the embedded atom method (EAM). Three single-crystal Cu nanoparticles are placed in contact in two different configurations (linear and kinked) and the structures are initially relaxed with MD steps for 300 ps. We observe plastic deformation during the sintering process for very small particles (∼2.5 nm in diameter) at temperatures as low as 300 K. The relaxed configurations are then strained to the breaking point at strain rates in the order of 1 m/s. We identify mechanisms of strain accommodation that lead to nanoparticle plastic deformation and eventually fracture. The linear and the kinked configurations break at strains of 0.263 and 0.344 respectively, while the maximum stress is close to 4 GPa (strain rate: 0.625 m/s). Both structures fail at the low-angle grain boundaries developed during the sintering process, while the higher strain for fracture for the kinked configuration is associated with interface sliding not observed in the linear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Heinrich, M. Klüppel and T. A. Viglis, Curr. Opin. Solid St. M. 6, 195 (2002).

    Article  CAS  Google Scholar 

  2. J. E. Mark, J. Phys. Chem. B 107, 903 (2003).

    Article  CAS  Google Scholar 

  3. A. I. Medalia and G. Kraus in Science and Technology of Rubber 2nd ed., edited by J. E. Mark, B. Erman and F. R. Eirich, (Academic Press, 1994) pp. 387–418.

    Book  Google Scholar 

  4. Z. Pu, J. E. Mark, J. M. Jethmalani and W. T. Ford, Chem. Mater. 9, 2442 (1997).

    Article  CAS  Google Scholar 

  5. D. J. Kohls, G. Beaucage, Curr. Opin. Solid St. M. 6, 183 (2002).

    Article  CAS  Google Scholar 

  6. M. Gerspacher, C. P. O’Farrell, Kaut. Gummi Kunstst. 54, 153 (2001).

    CAS  Google Scholar 

  7. T. A. Witten, M. Rubinstein and R. H. Colby, J. Phys. II France 3, 367 (1993).

    Article  CAS  Google Scholar 

  8. S. K. Friedlander, H.D. Jang, K. H. Ryu, Appl. Phys. Lett. 72, 173 (1998).

    Article  CAS  Google Scholar 

  9. K. Ogawa, T. Vogt, M. Ullmann, S. Johnson and S. K. Friedlander, J. Appl. Phys. 87, 63 (2000).

    Article  CAS  Google Scholar 

  10. Y. J. Suh and S. K. Friedlander, J. Appl. Phys. 93, 3515 (2003).

    Article  CAS  Google Scholar 

  11. S. K. Friedlander, K. Ogawa, M. Ullmann, J. Polym. Sci. Pol. Phys. 38, 2658 (2000).

    Article  CAS  Google Scholar 

  12. S.M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  13. The EAM parameterization used was that of D. J. Oh and R. A. Johnson, J. Mater. Res. 3, 471 (1988).

    Article  CAS  Google Scholar 

  14. U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton, Science 248, 454 (1990).

    Article  CAS  Google Scholar 

  15. H. Zhu and R. S. Averback, Phil. Mag. Lett. 73, 27 (1996).

    Article  CAS  Google Scholar 

  16. P. Zeng, S. Zalac, P. C. Clapp, J.A. Rifkin, Mater. Sci. Eng. A 252, 301 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalis, A.S., Friedlander, S.K. The Behavior of Copper Nanoparticle Chain Aggregates Under Strain – A Molecular Dynamics Approach. MRS Online Proceedings Library 778, 98 (2003). https://doi.org/10.1557/PROC-778-U9.8

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-778-U9.8

Navigation