Skip to main content
Log in

Characterization of a Cerium-Rich Pyrochlore-Based Ceramic Nuclear Waste Form

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Titanate ceramics have been proposed as candidate materials for immobilizing excess weapons plutonium. This study focuses on the characterization of a titanate-based ceramic through X-ray diffraction (XRD), electron probe microanalysis, and electron energy-loss spectroscopy (EELS). Three distinct phases have been identified, and their volume fraction was determined from element distribution maps using Scionimage-NIH Analysis software. This analysis revealed that the pyrochlore-group phase betafite (A2Ti2O7) forms the matrix of the ceramic and occupies 90.4% of the volume. Uniformly distributed in this matrix are perovskite (A2Ti2O6) and Hf-enriched rutile (TiO2), which account for 6.4 vol% and 3.1 vol%, respectively. The studied ceramic exhibits a very low porosity (0.3 vol%), which is characterized by small (<6 μm), rounded and isolated voids. In the studied ceramic, A-site cations are represented by Ca, rare earth elements, and Hf. The powder XRD pattern of the ceramic allowed refining the unit cell parameters for the cubic betafite, which is characterized by a cell edge of 10.132±0.003Å. The EELS data indicate that Ce is present as both Ce3+ and Ce4+ in betafite, whereas in perovskite, all Ce is trivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Ringwood, S.E. Kesson, N.G. Ware, W. Hibbesron, and A. Major, Immobilisation of high level nuclear reactor wastes in Synroc, Nature278, 219 (1979).

    Article  CAS  Google Scholar 

  2. A.E. Ringwood, S.E. Kesson, K.D. Reeve, D.M. Levins, and E.J. Ramm, in Radioactive Waste Forms for the Future, edited by W. Lutze and R.C. Ewing (North Holland, Amsterdam, 1988), pp. 233–334.

    Google Scholar 

  3. I.W. Donald, B.L. Metcalfe, and R.N.J. Taylor, J. Mat. Sci.32, 5851 (1997).

    Article  CAS  Google Scholar 

  4. E. R. Vance, C. J. Ball, R. A. Day, K. L. Smith, M. G. Blackford, B. Begg, and P. J. Angel, J. Alloys Comp.213/214, 406 (1994).

    Article  Google Scholar 

  5. K.L. Smith, G.R. Lumpkin, M.G. Blackford, and M. Colella, in Advances in Environmental Materials, Vol. II: Environmentally Preferred Materials ( T. White and J.A. Stegemann, eds), Mat. Res. Soc. Proc (Singapore), p. 301–316 (2001).

    Google Scholar 

  6. K.P. Hart, Y. Zhang, E. Loi, Z. Aly, M.W.A. Stewart, A. Brownscombe, B.B. Ebbinghouse, and W.L. Bourcier Mat. Res. Soc. Symp. Proc.608, 353 (2000).

    Article  CAS  Google Scholar 

  7. E. C. Buck, D. B. Chamberlain, and R. Gieré, Mat. Res. Soc. Symp. Proc.556, 19 (1999).

    Article  CAS  Google Scholar 

  8. R. Gieré, C. Hatcher, E. Reusser, and E. Buck, Mat. Res. Soc. Symp. Proc.713, 303 (2002).

    Article  Google Scholar 

  9. S.K. Roberts, W.L. Bourcier, and H.F. Shaw, Radiochim. Acta88, 539 (2000).

    Article  CAS  Google Scholar 

  10. Y. Zhang, W.L. Bourcier, R.A. Day, M. Colella, B. Thomas, Z. Aly, A. Jostsons, J. Nuclear Materials289, 254 (2001).

    Article  CAS  Google Scholar 

  11. A. J. Bakel, V.N. Zyryanov, C. J. Mertz, E. C. Buck, and D. B. Chamberlain, Mat. Res. Soc. Symp. Proc.556, 181(1999).

    Article  CAS  Google Scholar 

  12. M.V. Zamoryanskaya, and B.E. Burakov, Mat. Res. Soc. Symp. Proc.663, 301 (2001).

    Article  Google Scholar 

  13. J.M. Pareizs, and A.D. Cozzi, in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries V, Ceram. Trans.107, 617 (2000).

    CAS  Google Scholar 

  14. M.W.A. Stewart, E.R. Vance, R.A. Day, S. Leung, A. Brownscombe, M.L. Carter, and B.B. Ebbinghaus, in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries V, Ceram. Trans.107, 617 (2000).

    Google Scholar 

  15. J.L. Pouchou and F. Pichoir, Rech. Aérosp.1984–3, 167 (1984).

    Google Scholar 

  16. F. Jollet, T. Petit, S. Gota, N. Thromat, M. Gautier-Soyer, and A. Pasturel, J. Phys. Condens. Matter9, 9393 (1997).

    Article  CAS  Google Scholar 

  17. J. Yang, B. Tang, and S. Luo, Mat. Res. Soc. Symp. Proc.663, 333 (2001).

    Article  Google Scholar 

  18. ICDD, Powder Diffraction File (Release 1998). Newton Square, PA.

  19. C.J. Ball, W.J. Buykx, F.J. Dickson, K. Hawkins, D.M. Levins, R.St.C. Smart, K.L. Smith, G.T. Stevens, K.G. Watson, D. Weedon, and T.J White . J. Am. Ceram. Soc.72, 404 (1989).

    Article  CAS  Google Scholar 

  20. S. Sasaki, C.T. Prewitt, and J.D. Bass, Acta Cryst.C48, 1668 (1997).

    Google Scholar 

  21. C.J. Howard, T.M. Sabine, and F. Dickson, Acta Cryst.B47, 462 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gieré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gieré, R., Segvich, S. & BUCK, E.C. Characterization of a Cerium-Rich Pyrochlore-Based Ceramic Nuclear Waste Form. MRS Online Proceedings Library 757, 64 (2002). https://doi.org/10.1557/PROC-757-II6.4

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-757-II6.4

Navigation