Skip to main content
Log in

Atomistic Studies of Dislocation Glide in γ-TiAl

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Computer simulation of the core structure and glide of ordinary 1/2<110] dislocations and <101] superdislocations in L10 TiAl has been performed using the recently constructed BondOrder Potentials. This description of atomic interactions includes explicitly, within the tight-binding approximation, the most important aspects of the directional bonding, namely d-d, p-p and d-p bonds. The ordinary dislocation in the screw orientation was found to have a non-planar core and, therefore, high Peierls stress. The superdislocation was found to possess in the screw orientation either a planar (glissile) or a non-planar (sessile) core structure. However, the glissile core transforms into the sessile one for certain orientations of the applied stress. This implies a strong asymmetry of the yield stress and the break down of the Schmid law when the plastic flow is mediated by superdislocations. At the same time, this may explain the orientation dependence of the dislocation substructure observed in the single-phase γ-TiAl by electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Yamaguchi, H. Inui, S. Yokoshima, K. Kishida and D. R. Johnson, Mat. Sci. Eng. A 213, 25 (1996).

    Article  Google Scholar 

  2. S. Sriram, V. K. Vasudevan and D. Dimiduk, High-Temperature Ordered Intermetallic Alloys VI, edited by J. A. Horton, I. Baker, S. Hanada, R. D. Noebe and D. S. Schwartz (Pittsburgh, Materials Research Society), Vol. 364, p. 647 ( 1999).

  3. H. Inui, M. Matsumuro, D. H. Wu and M. Yamaguchi, Philos. Mag. A 75, 395 (1997).

    Article  CAS  Google Scholar 

  4. T. Kawabata, T. Kanai and O. Izumi, Acta Metall. 33, 1355 (1985).

    Article  CAS  Google Scholar 

  5. M. S. Duesbery, Dislocations in Solids, edited by F. R. N. Nabarro (Amsterdam, Elsevier), Vol. 8, p. 67 ( 1989).

  6. V. Vitek, Prog. Mater. Sci. 36, 1 (1992).

    Article  CAS  Google Scholar 

  7. V. Vitek, Intermetallics 6, 579 (1998).

    Article  CAS  Google Scholar 

  8. A. Girshick and V. Vitek, High-Temperature Ordered Intermetallic Alloys VI, edited by J. Horton, I. Baker, S. Hanada, R. D. Noebe and D. Schwartz (Pittsburgh, Materials Research Society), Vol. 364, p. 145 ( 1995).

  9. J. P. Simmons, S. I. Rao and D. M. Dimiduk, Philos. Mag. A 75, 1299 (1997).

    Article  CAS  Google Scholar 

  10. J. Panova and D. Farkas, Philos. Mag. A 78, 389 (1998).

    Article  CAS  Google Scholar 

  11. C. Woodward and S. I. Rao, Philos. Mag. A, in press (2003).

  12. Y. Song, S. P. Tang, J. H. Xu, O. N. Mryasov, A. J. Freeman, C. Woodward and D. M. Dimiduk, Philos. Mag. B 70, 987 (1994).

    Article  CAS  Google Scholar 

  13. N. Nguyen-Manh, A. M. Bratkovsky and D. G. Pettifor, Phil. Trans. Roy. Soc. London A 351, 529 (1995).

    Article  Google Scholar 

  14. J. Zou, C. L. Fu and M. H. Yoo, Intermetallics 3, 265 (1995).

    Article  CAS  Google Scholar 

  15. D. Nguyen-Manh and D. G. Pettifor, Intermetallics 7, 1095 (1999).

    Article  CAS  Google Scholar 

  16. D. Nguyen-Manh and D. G. Pettifor, Gamma Titanium Aluminides, edited by Y. W. Kim (Pittsburgh, TMS), p. 175 ( 1999).

  17. S. Znam, Philadelphia, University of Pennsylvania, (2001).

  18. S. Znam, D. Nguyen-Manh, D. G. Pettifor and V. Vitek, Philos. Mag. A, in press (2003).

  19. D. G. Pettifor, Phys. Rev. Lett. 63, 2480 (1989).

    Article  CAS  Google Scholar 

  20. A. P. Horsfield, A. M. Bratkovsky, M. Fearn, D. G. Pettifor and M. Aoki, Phys. Rev. B 53, 1656, 12694 (1996).

    Article  CAS  Google Scholar 

  21. D. G. Pettifor, I. I. Oleinik, D. Nguyen-Manh and V. Vitek, Comp. Mat. Sci. 23, 33 (2002).

    Article  CAS  Google Scholar 

  22. V. Vitek, K. Ito, R. Siegl and S. Znam, Mat. Sci. Eng. A 240, 752 (1997).

    Article  Google Scholar 

  23. J. Ehmann and M. Fähnle, Philos. Mag. A 77, 701 (1998).

    Article  CAS  Google Scholar 

  24. F. Gregori and P. Veyssiere, Philos. Mag. A 80, 2913, 2933 (2000).

    Article  CAS  Google Scholar 

  25. K. Ito and V. Vitek, Philos. Mag. A 81, 1387 (2001).

    Article  CAS  Google Scholar 

  26. S. I. Rao and C. Woodward, Philos. Mag. A 81, 1317 (2001).

    Article  CAS  Google Scholar 

  27. C. Woodward and S. I. Rao, Philos. Mag. A 81, 1305 (2001).

    Article  CAS  Google Scholar 

  28. P. Veyssiere, Y.-L. Chiu and F. Gregori, Defect Properties and Related Phenomena in Intermetallic Alloys, edited by E. P. George, M. J. Mills, H. Inui and G. Eggeler, this volume ( 2003).

  29. G. Hug, A. Loiseau and P. Veyssiere, Philos. Mag. A 57, 499 (1988).

    Article  CAS  Google Scholar 

  30. Z. X. Li and S. H. Whang, Mat. Sci. Eng. A 152, 182 (1992).

    Article  Google Scholar 

  31. H. Inui and M. Yamaguchi, Electron Microscopy 32,144 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porizek, R., Znam, S., Nguyen-Manh, D. et al. Atomistic Studies of Dislocation Glide in γ-TiAl. MRS Online Proceedings Library 753, 43 (2002). https://doi.org/10.1557/PROC-753-BB4.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-753-BB4.3

Navigation