Skip to main content
Log in

Computer Simulation Studies of Fracture in Vitreous Silica

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We conduct molecular dynamics computer simulations of fracture in silica glass using the van Beest, Kramer, and van Santen model. Stress is applied by uniaxial strain at differentpulling rates. Comparisons withprevious fracture simulations of silica that used the Soules force function arepresented. We find that in both models stress is relieved by rotation of the (SiO4)-2 tetrahedrons, increasing Si-O-Si bonding angles, and only small changes in the tetrahedron dimensions and O-Si-O angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Soules, J. Chem.phys. 71, 4570–4578 (1979).

    Article  CAS  Google Scholar 

  2. R. Ochoa, T.P. Swiler and J.H. Simmons, J. Non-Cryst. Sol. 128, 57–68 (1991).

    Article  CAS  Google Scholar 

  3. J.H. Simmons, T.P. Swiler and R. Ochoa, J. Non-Cryst. Sol. 134, 179–182 (1991).

    Article  CAS  Google Scholar 

  4. T.p. Swiler, “Atomic-Scale Dynamicprocesses in the Brittle fracture of Silica,”ph. D. Dissertation, University of Florida, Gainesville (1994).

    Google Scholar 

  5. R. Ochoa and J.H. Simmons, J. Non-Cryst. Sol. 75, 413–418 (1985).

    Article  CAS  Google Scholar 

  6. B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett. 64 (16) 1955–8 (1990).

    Article  Google Scholar 

  7. S. N. Taraskin and S. R. Elliot, Phys. Rev. B 56 (14), 8605–18 (1997).

    Article  CAS  Google Scholar 

  8. K. Vollmayr, W. Kob, and K Binder, Phys. Rev. B 54 (22) 15808–27 (1999).

    Article  Google Scholar 

  9. P. Jund and R. Jullien, Phys. Rev. Lett. 83 (11) 2210–13 (1999).

    Article  CAS  Google Scholar 

  10. W. Kob, “Computer simulations of supercooled liquids and glasses,” J.phys.: Conden. Matter 11 R85–R115 (1999) and references therein.

    CAS  Google Scholar 

  11. M. Benoit, S. Ispas, P. Jund, and R. Jullien, Eur.phys. J. B 13, 631–36 (2000).

    Article  CAS  Google Scholar 

  12. L. V. Woodcock, C. A. Angell, and P. Cheeseman, Chem.phys. 65, 1565–1577 (1976).

    CAS  Google Scholar 

  13. M.p. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Universitypress, NY (1990).

    Google Scholar 

  14. W. Smith and T. R. Forrester, CCLRC, Daresbury Laboratory, Warrington, England, version 2.12 (1999).

    Google Scholar 

  15. N. Huff, E. Demiralp, T. Cagin, and W. A. Goddard, J.Non-Cryst. Solids 253, 133 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa, R., Arief, M. & Simmons, J.H. Computer Simulation Studies of Fracture in Vitreous Silica. MRS Online Proceedings Library 731, 517 (2002). https://doi.org/10.1557/PROC-731-W5.17

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-731-W5.17

Navigation