Skip to main content
Log in

Critical Currents at Grain Boundaries in High Temperature Superconductors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present atomic resolution Z-contrast images, electron energy loss spectroscopy (EELS) and theoretical calculations in support of a band-bending model for the effect of grain boundaries on critical currents. In the high angle regime, dislocation cores are closely spaced and the boundary is modeled as a continuous junction, with a width determined by the dislocation density per unit boundary length. This quantitatively explains the approximately exponential reduction in critical current. In the low angle regime, where dislocations are separated by substantial good passages, explicit calculations of flux pinning are presented. Significant differences are found between a strain and band-bending mechanism. Recent data fit the band-bending model and suggest substantial improvement is possible through doping to a flat band condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kim, G. Duscher, N.D. Browning, K. Sohlberg, S.T. Pantelides, and S.J. Pennycook, Phys. Rev. Lett. 86, 4056 (2001).

    Article  CAS  Google Scholar 

  2. D. Dimos, P. Chaudhari, and J. Mannhart Phys. Rev. B41, 4038 (1990).

    Article  Google Scholar 

  3. Z. G. Ivanov, P. Å. Nilsson, D. Winkler, J. A. Alarco, T. Claeson, A. Stepantsov, and A. Tzalenchuk, Appl Phys Lett. 59, 3030 (1991).

    Article  CAS  Google Scholar 

  4. E.M. James, N. D. Browning, A. W. Nicholls, M. Kawasaki, Y. Xin, and S. Stemmer, J. Elect. Micr. 47, 561 (1998).

    Article  CAS  Google Scholar 

  5. S. J. Pennycook and P. D. Nellist, in D. G. Rickerby, U. Valdré and G. Valdré (eds.) Impact of Electron and Scanning Probe Microscopy on Materials Research, Kluwer Academic Publisers, The Netherlands, p161 (1999).

    Chapter  Google Scholar 

  6. P. D. Nellist and S. J. Pennycook, in P. W. Hawkes (ed.) Advances in Imaging and Electron Physics, Academic Press 113, 148 (2000).

    Google Scholar 

  7. N. D. Browning, M. F. Chisholm, and S. J. Pennycook, Nature 366, 143 (1993).

    Article  CAS  Google Scholar 

  8. G. Duscher, N. D. Browning, and S. J. Pennycook, Phys. Stat. Sol. (a) 166, 327 (1998).

    Article  CAS  Google Scholar 

  9. P. D. Nellist and S. J. Pennycook, Phys. Rev. Lett. 81, 4156 (1998).

    Article  CAS  Google Scholar 

  10. A. J. McGibbon, S. J. Pennycook, and J. E. Angelo, Science 269, 519 (1995).

    Article  CAS  Google Scholar 

  11. Y. Xin, S. J. Pennycook, N. D. Browning, P. D. Nellist, S. Sivananthan, F. Omnès, B. Beaumont, J.-P. Faurie, and P. Gibart, Appl. Phys. Lett. 72, 2680 (1998).

    Article  CAS  Google Scholar 

  12. M. M. McGibbon, N. D. Browning, M. F. Chisholm, A. J. McGibbon, and S. J. Pennycook, V. Ravikumar, and V. P. Dravid, Science 266, 102 (1994).

    Article  CAS  Google Scholar 

  13. M. M. McGibbon, N. D. Browning, A. J. McGibbon, and S. J. Pennycook, Phil. Mag. A73, 625 (1996).

    Article  Google Scholar 

  14. N. D. Browning, S. J. Pennycook, M. F. Chisholm, M. M. McGibbon and A. J. McGibbon, Interface Science 2, 397 (1995).

    Article  Google Scholar 

  15. M. F. Chisholmand S. J. Pennycook. Mater. Res. Soc. Bull. 22, 53 (1997)

    Article  Google Scholar 

  16. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  17. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1954).

    Article  Google Scholar 

  18. D. Vanderbilt, Phys. Rev. B41, 7892 (1990).

    Article  Google Scholar 

  19. H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).

    Article  Google Scholar 

  20. N. D. Browning, M. F. Chisholm, D. P. Norton, D. H. Lowndes and S. J. Pennycook, Physica C 212, 185 (1993).

    Article  CAS  Google Scholar 

  21. N. D. Browning, J. Yuan and L. M. Brown, Physica C 202, 12 (1992).

    Article  CAS  Google Scholar 

  22. J. Halbritter, Phys. Rev. B 46 (1992) 14861, Phys Rev. B 48 (1993) 9735.

  23. H. Hilgenkamp and J. Mannhart, Appl. Phys. Lett. 73, 265 (1998).

    Article  CAS  Google Scholar 

  24. M. F. Chisholm and S. J. Pennycook, Nature 351, 47 (1991).

    Article  CAS  Google Scholar 

  25. A. Gurevich and E. A. Pashitskii Phys. Rev. B57, 13878 (1998).

    Article  Google Scholar 

  26. H. Hilgenkamp, J. Mannhart and B. Mayer, Phys. Rev. B53, 14586 (1997).

    Google Scholar 

  27. D. P. Norton et al., Science, 274 (1996) 755.

    Article  CAS  Google Scholar 

  28. X. D. Wu et al., Appl. Phys. Lett., 67 (1995) 2397.

    Article  CAS  Google Scholar 

  29. D. Agassi and J. R. Cullen, Physica C 316 (1999) 1.

    Article  CAS  Google Scholar 

  30. D. Agassi, C. S. Pande and R. A. Masumura, Phys. Rev.B. 52 (1995) 16237.

    Article  CAS  Google Scholar 

  31. D. T. Verebelyi, C. Cantoni, J. D. Budai, D. K. Christen, H. J. Kim and J. R. Thompson, Appl. Phys. Lett. 78, 2031 (2001)

    Article  CAS  Google Scholar 

  32. We plot their results only for boundaries close to a pure tilt geometry (rotation about the caxis).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agassi, D., Pennycook, S.J., Christenb, D.K. et al. Critical Currents at Grain Boundaries in High Temperature Superconductors. MRS Online Proceedings Library 689, 81 (2001). https://doi.org/10.1557/PROC-689-E8.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-689-E8.1

Navigation