Skip to main content
Log in

Dislocation Nucleation and Propagation During Deposition of Cubic Metal Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper we present three-dimensional molecular dynamics simulations of dislocation nucleation and propagation during thin film deposition. Aiming to identify mechanisms of dislocation nucleation in polycrystalline thin films, we choose the film material to be the same as the substrate - which is stressed. Tungsten and aluminum are taken as representatives of BCC and FCC metals, respectively, in the molecular dynamics simulations. Our studies show that both glissile and sessile dislocations are nucleated during the deposition, and surface steps are preferential nucleation sites of dislocations. Further, the results indicate that dislocations nucleated on slip systems with large Schmid factors more likely survive and propagate into the film. When a glissile dislocation is nucleated, it propagates much faster horizontally than vertically into the film. The mechanisms and criteria of dislocation nucleation are essential to the implementation of the atomistic simulator ADEPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Burton, N. Cabrera, and F. Frank, Trans. Roy. Soc. London A243, 299 (1951).

    CAS  Google Scholar 

  2. H. Huang, G. H. Gilmer and T. Diaz de la Rubia, J. Appl. Phys. 84, 3636 (1998).

    Article  CAS  Google Scholar 

  3. G. H. Gilmer, H. Huang, T. Diaz de la Rubia, J. D. Torre and F. Baumann, Thin Solid Films 365, 189 (1999).

    Article  Google Scholar 

  4. H. Huang and G. H. Gilmer, J. Computer Aided Materials Design 6, 117 (1999).

    Article  CAS  Google Scholar 

  5. G. H. Gilmer, H. Huang, T. Diaz de la Rubia and C. Roland, Comp. Mater. Sci. 12, 354 (1998).

    Article  CAS  Google Scholar 

  6. H. Huang and G. H. Gilmer, J. Computer Aided Materials Design 7 (2001) in press.

  7. F. H. Baumann, D. L. Chopp, T. Diaz de la Rubia, G. H. Gilmer, J. E. Greene, H. Huang, S. Kodambaka, P. O’Sullivan, and. I. Petrov, MRS Bulletin 26, 182 (2001).

    Article  CAS  Google Scholar 

  8. F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. A198, 205 (1949).

    Google Scholar 

  9. L. Dong, J. Schnitker, R. W. Smith and D. J. Srolovitz, J. Appl. Phys. 83, 217 (1998).

    Article  CAS  Google Scholar 

  10. W. C. Liu, S. Q. Shi, C. H. Woo and Hanchen Huang, Comp. Mater. Sci. (2001) accepted.

    Google Scholar 

  11. W. C. Liu, S. Q. Shi, C. H. Woo, and Hanchen Huang, Computer Modeling in Engineering & Sciences (2001) submitted.

    Google Scholar 

  12. G. J. Ackland and R. Thetford, Phil. Mag. A56, 15 (1987).

    Article  Google Scholar 

  13. F. Ercolessi and J. Adams, Europhys. Lett. 26, 583 (1994).

    Article  CAS  Google Scholar 

  14. A. Nyberg and T. Schlick, J. Chem. Phys. 95, 4989 (1991).

    Article  Google Scholar 

  15. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  16. H. Huang, M. Caturla, L. Marques, and T. Diaz de la Rubia, “Formulation of Atomic Level Stress Tensor in Silicon”, LLNL Report UCRL-ID-231669, 1998.

    Google Scholar 

  17. B. A. Bilby, R. Bullough and E. Smith, Proc. Roy. Soc. A231, 263 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W.C., Wang, Y.X., Woo, C.H. et al. Dislocation Nucleation and Propagation During Deposition of Cubic Metal Thin Films. MRS Online Proceedings Library 677, 732 (2001). https://doi.org/10.1557/PROC-677-AA7.32

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-677-AA7.32

Navigation