Skip to main content
Log in

Next-Generation Transparent Conducting Oxides for Photovoltaic Cells: an Overview

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Transparent conducting oxides (TCOs) are becoming a more critical element in thin-film photovoltaic devices. In the continued drive to increase efficiency and stability while reducing cost and optimizing performance, the optical, electrical, and materials properties of TCOs gain increasing importance. TCOs can perform a variety of important functions, including contacts, antireflection coatings, and chemical barriers. In this paper, we will review some of the current advances in the field of transparent conductors and, where possible, will relate these advances to thin-film photovoltaic devices. Highlights will be on the rapidly growing collection of new n- and p-type materials; the implications of these materials on PV have not been fully assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Gordon, Criteria For Choosing Transparent Conductors. MRS Bull., 2000. 25: p. 52.

    Article  CAS  Google Scholar 

  2. X. Wu, et al., CdS/CdTe thin-film solar cell with a zinc stannate buffer layer. AIP Conf. Proc., 1999. 462(CPV Photovoltaics Program Review): p. 37–41.

    Article  CAS  Google Scholar 

  3. R.G. Gordon, Preparation and properties of transparent conductors. Mater. Res. Soc. Symp. Proc., 1996. 426(Thin Films for Photovoltaic and Related Device Applications): p. 419–429.

    Article  CAS  Google Scholar 

  4. T.J. Coutts, D.L. Young, and X. Li, Characterization of transparent conducting oxides. MRS Bull., 2000.25(8): p. 58–65.

    Article  CAS  Google Scholar 

  5. D.S. Ginley and C. Bright, Transparent Conducting Oxides. MRS Bull., 2000.25(8): p. 15.

    Article  CAS  Google Scholar 

  6. M. Yan, et al., Highly Conductive Expitaxial CdO thin films prepared by pulsed laser deposition. Appl. Phys. Lett., 2001.78(16): p. 2342.

    Article  CAS  Google Scholar 

  7. T.J. Coutts, et al., Transparent conducting oxides: status and opportunities in basic research. Proc.-Electrochem. Soc., 1999. 99-11(Photovoltaics for the 21st Century): p. 274–288.

    CAS  Google Scholar 

  8. T.J. Coutts, D.L. Young, and X. Li, Fundamental advances in transparent conducting oxides. Mater. Res. Soc. Symp. Proc., 2000. 623(Materials Science of Novel Oxide-Based Electronics): p. 199–209.

    Article  CAS  Google Scholar 

  9. T. Minami, New materials for transparent and conductive films. Multicomponent oxides. Nyu Seramikkusu, 1996.9(4): p. 30–4.

    CAS  Google Scholar 

  10. T. Minami, New n-Type Transparent Conducting Oxides. MRS Bull., 2000.25(8): p. 39.

    Article  Google Scholar 

  11. T. Minami, S. Takata, and T. Kakumu, New multicomponent transparent conducting oxide films for transparent electrodes of flat panel displays. J. Vac. Sci. Technol., A, 1996. 14(3, Pt. 2): p. 1689–1693.

    Article  CAS  Google Scholar 

  12. A.J. Freeman, et al., Chemical and Thin Film Strategies for New Transparent Conducting Oxides. MRS Bull., 2000.25(8): p. 45.

    Article  CAS  Google Scholar 

  13. X. Wu, et al., Application of Cd2SnO4 transparent conducting oxides in CdS/CdTe thin-film devices. Conf. Rec. IEEE Photovoltaic Spec. Conf., 1997. 26th: p. 347–350.

    CAS  Google Scholar 

  14. X. Wu, et al., IEEE PVSC, 2000: p. in press.

    Google Scholar 

  15. H. Kawazoe, Chemical design of transparent p-type conducting oxides. Kotai Butsuri, 1998.33(11): p. 937–943.

    CAS  Google Scholar 

  16. H. Kawazoe, P-type oxide transparent conductive films. Tomei Dodenmaku no Shintenkai, 1999: p. 47–57.

    Google Scholar 

  17. H. Kawazoe, et al., Transparent electric conductor oxide thin film based on copper and strontium, in Jpn. Kokai Tokkyo Koho. 2000, (TDK Electronics Co., Ltd., Japan).: Jp. p. 6 pp.

    Google Scholar 

  18. H. Yanagi, et al., Chemical design and thin film preparation of p-type conductive transparent oxides. J. Electroceram., 2000.4(2/3): p. 407–414.

    Article  CAS  Google Scholar 

  19. H. Yanagi, et al., Transparent P-and N-type conductive oxides with delafossite structure. Mater. Res. Soc. Symp. Proc., 2000. 623(Materials Science of Novel Oxide-Based Electronics): p. 235–243.

    Article  CAS  Google Scholar 

  20. H. Kawazoe, et al., Transparent p-type conducting oxides: design and fabrication of p-n Heterojunctions. MRS Bull., 2000.25(8): p. 28.

    Article  CAS  Google Scholar 

  21. H. Ohta, et al., Room temperature operation of UV-LED composed of TCO hetero p-n junction, p-SrCu2O2 / n-ZnO. Mater. Res. Soc. Symp. Proc., 2000. 623(Materials Science of Novel Oxide-Based Electronics): p. 283–288.

    Article  CAS  Google Scholar 

  22. H. Ohta, et al., Development of near-UV-emitting diode using transparent oxide semiconductors. Seramikkusu, 2001.36(4): p. 285–288.

    CAS  Google Scholar 

  23. H. Yanagi, et al., Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. Appl. Phys. Lett., 2001.78(11): p. 1583–1585.

    Article  CAS  Google Scholar 

  24. H. Ota, et al., Zinc oxide thin film having high single crystal property and its deposition, in Jpn. Kokai Tokkyo Koho. 2000, (Hoya Corp., Japan).: Jp. p. 10 pp.

    Google Scholar 

  25. H. Tadata and T. Kawai, Realization of p-type zinc oxide. Kotai Butsuri, 2000.35(8): p. 570–577.

    CAS  Google Scholar 

  26. X.-L. Guo, et al., Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn. J. Appl. Phys., Part 2, 2001.40(3A): p. L177–L180.

    Article  CAS  Google Scholar 

  27. X.L. Guo, H. Tabata, and T. Kawai, Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source. J. Cryst. Growth, 2001.223(1-2): p. 135–139.

    Article  CAS  Google Scholar 

  28. T. Yamamoto and H. Katayama-Yoshida, Solution using a Co-doping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys., Part 2, 1999. 38(2B): p. L166–L169.

    Article  CAS  Google Scholar 

  29. T. Yamamoto and H. Katayama-Yoshida, Theory of codoping of acceptors and reactive donors in GaN. EMIS Datarev. Ser., 1999. 23(Properties, Processing and Applications of Gallium Nitride and Related Semiconductors): p. 306–312.

    CAS  Google Scholar 

  30. T. Yamamoto and H. Katayama-Yoshida, Unipolarity of ZnO with a wide-band gap and its solution using codoping method. J. Cryst. Growth, 2000. 214/215: p. 552–555.

    Article  Google Scholar 

  31. S.B. Zhang, S.H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B: Condens. Matter Mater. Phys., 2001.63(7): p. 075205/1-075205/7.

    Article  Google Scholar 

  32. O.N. Mryasov and A.J. Freeman, Phys. Rev. B: Condens. Matter Mater. Phys., 2001. submitted for publication.

    Google Scholar 

  33. Y. Yan, S. zhang, and S.T. Pantelides, PRL, 2001. submitted.

    Google Scholar 

  34. D.L. Young, T.J. Coutts, and V.I. Kaydanov, Density-of-states effective mass and scattering parameter measurements by transport phenomena in thin films. Rev. Sci. Instrum., 2000. 71(2, Pt. 1): p. 462–466.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginley, D., Coutts, T., Perkins, J. et al. Next-Generation Transparent Conducting Oxides for Photovoltaic Cells: an Overview. MRS Online Proceedings Library 668, 27 (2000). https://doi.org/10.1557/PROC-668-H2.7

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-668-H2.7

Navigation