Skip to main content
Log in

The Effect of Moderate Hydrogen Dilution on Stability and Structure of Amorphous Silicon Deposited by Hot-Wire CVD

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The effect of moderate hydrogen dilution of the process gas, F(H2)/F(SiH4) = 0 to 3, on the properties of amorphous silicon is discussed for material and solar cells deposited by Hot-Wire CVD. Dielectric properties were obtained from spectroscopic ellipsometry and are related to stability and hydrogen bonding configuration of films deposited with varying hydrogen dilution at different substrate temperatures. The stability was determined by comparing defect densities obtained from photoconductivity spectroscopy in the constant photocurrent mode (CPM) before and after pulsed-light soaking. At low substrate temperatures, which are relevant for the prepara- tion of pin-type solar cells (160-200°C), moderate hydrogen dilution (∼0.3) improves material quality regarding density and network disorder (oscillator bandwidth) as obtained from spectro-scopic ellipsometry, resulting in a higher stability. At higher substrate temperatures (300°C), stability and hydrogen bonding configurations are generally better, but moderate hydrogen dilu-tion already deteriorates these properties compared to material prepared without dilution. The incorporation of Hot-Wire-a-Si:H into pin-type solar cells is also discussed and a good correlation of ellipsometric results with bulk-related properties of solar cell performance is observed. The optimum hydrogen dilution is found to be 0 to 0.3 for i-layer deposition yielding initial efficiencies of up to 8.9% for solar cells entirely fabricated by Hot-Wire CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bauer, B. Schröder, W. Herbst, and M. Lill, Proc. 2nd WCPVSEC (1998) p. 363.

    Google Scholar 

  2. Y. Ziegler, S. Dubail, Ch. Hof, U. Kroll, and A. Shah, Proc. 26th IEEE PVSC (1997) p. 687.

    Google Scholar 

  3. U. Weber, M. Koob, R.O. Dusane, C. Mukherjee, H. Seitz, and B. Schroeder, Proc. of the 16th EC PVSEC (2000) pp. 286–291.

    Google Scholar 

  4. A.H. Mahan, R.C. Reedy Jr, E. Iwaniczko, Q. Wang, B.P. Nelson, Y. Xu, A.C. Gallagher, H.M. Branz, R.S. Crandall, J. Yang, and S. Guha, in Amorphous and Microcrystalline Silicon Technology, edited by R. Schropp, H. M. Branz, M. Hack, I. Shimizu, and S. Wagner (Mat. Res. Soc. Symp. Proc. 507, 1998, San Francisco, CA, USA) pp. 119–124.

  5. Q. Wang, E. Iwaniczko, Y. Xu, W. Gao, B.P. Nelson, A.H. Mahan, R.S. Crandall, and H.M. Branz, Mat. Res. Soc. Symp. Proc. 609 (2000), in press.

    Google Scholar 

  6. B. Stannowski, A.M. Brockhoff, A. Nascetti, and R.E.I. Schropp, J. Non-Cryst. Solids, 266-269, 464 (2000).

    Article  CAS  Google Scholar 

  7. S. Guha, K. L. Narasimhan, and S. M. Pietruszko, J. Appl. Phys. 52, 859 (1981).

    Article  CAS  Google Scholar 

  8. S. Wieder, B. Rech, C. Beneking, F. Siebke, W. Reetz, and H. Wagner, Proc. of the 13th EC-PVSEC (1995) p. 234.

    Google Scholar 

  9. S. Okamoto, Y. Hishikawa, and S. Tsuda, Jpn. J. Appl. Phys. 35, 26 (1996).

    Article  CAS  Google Scholar 

  10. S. Bauer, B. Schröder, and H. Oechsner, J. Non-Cryst. Solids 227-230, 34 (1998).

    Article  CAS  Google Scholar 

  11. A.S. Ferlauto, J. Koh, P.I. Rovira, C.R. Wronski, R.W. Collins, and G. Ganguly, J. Non-Cryst. Solids, 266-269, 269 (2000).

    Article  CAS  Google Scholar 

  12. U. Weber, M. Koob, C. Mukherjee, D. Chandrashekhar, R. O. Dusane, and B. Schroeder, these Proceedings.

  13. A. Matsuda, J. Non-Cryst. Solids, 59-60, 767 (1983).

    Article  CAS  Google Scholar 

  14. G. E. Jellison Jr, and F. A. Modine, Appl. Phys. Lett. 69, 371 (1996); 69, 2137(E) (1996).

    Article  CAS  Google Scholar 

  15. C.C. Tsai, R. Thompson, C. Doland, F.A. Ponce, G.B. Anderson, and B. Wacker in Amorphous Silicon Technology, edited by A. Madan, M.J. Thompson, P.C. Taylor, P.G. LeComber, and Y. Hamakawa (Mat. Res. Soc. Symp. Proc. 118, 1988, Reno, NV, USA) pp. 49–54.

  16. G. Ganguly and A. Matsuda, J. Non-Cryst. Solids 198-200, 559 (1996).

    Article  CAS  Google Scholar 

  17. H. Shirai, B. Drévillon, and I. Shimizu, Jpn. J. Appl. Phys. 33, 5590 (1994).

    Article  CAS  Google Scholar 

  18. J. Doyle, R. Robertson, G.H. Lin, M.Z. He, and A. Gallagher, J. Appl. Phys. 64, 3215 (1988).

    Article  CAS  Google Scholar 

  19. G. Yue, J.D. Lorentzen, J. Lin, D. Han, and Q. Wang, Appl. Phys. Lett. 75, 492 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, U., Schroeder, B. The Effect of Moderate Hydrogen Dilution on Stability and Structure of Amorphous Silicon Deposited by Hot-Wire CVD. MRS Online Proceedings Library 664, 73 (2000). https://doi.org/10.1557/PROC-664-A7.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-664-A7.3

Navigation