Skip to main content
Log in

Unraveling the Structure of Decagonal Approximants by “Brute Force” Deconvolution of the Experimental Autocorrelation Function

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Methods for the ab initio structure analysis of periodic approximant phases from single- crystal X-ray diffraction data are presented. These methods are particularly suited to complex approximant structures with large unit cells and strong pseudosymmetry (where routine X-ray structure solution tools fail) and are based on the “brute-force” deconvolution of the experimentally measured autocorrelation function. This function is obtained directly by a simple Fourier transform of the measured X-ray diffraction intensities. Sub-optimal diffraction data from twinned, nanodomain and polycrystalline specimens can be processed despite the inevitable lack of information due to reflection overlap and limited resolution. The deconvolution process allows complex approximant structures to be unraveled without prior knowledge about the structure-building motifs. Examples are presented for the systems Al-Co-Ni and Al-Co-(Ta).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Widom, I. AlLehyani, and J. A. Moriarty, Phys. Rev. B 62(6), 3648 (2000).

    Article  CAS  Google Scholar 

  2. M. A. Estermann, K. Lemster, T. Haibach, and W. Steurer, Z. Kristallogr. 215, 584 (2000).

    CAS  Google Scholar 

  3. H. E. Schenk, Direct Methods of Solving Crystal Structures. Proc. of a NATO Advanced Study Institute, April 18-29, 1990, in Erice, Italy (Plenum Press, New York, 1991).

    Google Scholar 

  4. K. Robinson, Acta Crystallogr. 7, 494. (1954).

    Article  CAS  Google Scholar 

  5. A. L. Patterson, Phys. Rev. 46, 372 (1934).

    Article  CAS  Google Scholar 

  6. A. L. Patterson, Z. Kristallogr. 90, 517 (1935).

    CAS  Google Scholar 

  7. J. Karle and H. Hauptman, Acta Crystallogr. 17, 392 (1964).

    Article  CAS  Google Scholar 

  8. W. I. F. David, Nature 346(6286), 731 (1990).

    Article  Google Scholar 

  9. D. M. Wrinch, Philos. Mag. 27, 98 (1939).

    Article  CAS  Google Scholar 

  10. M. J. Buerger, Vector Space (John Wiley & Sons, Inc., New York, 1959).

    Google Scholar 

  11. M. A. Estermann, Nucl. Instrum. Methods Phys. Res., Sect. A 354(1), 126 (1995).

    Article  CAS  Google Scholar 

  12. M. A. Estermann, Program SHAPE. In: Xtal3.7 System of Crystallographic Programs (Eds. S.R. Hall, D.J. du Boulay & R. Olthof-Hazekamp, Univ. of Western Australia, 2000).

  13. J. Kraut, Acta Crystallogr. 14, 1146 (1961).

    Article  CAS  Google Scholar 

  14. P. G. Simpson, R. D. Dobrott, and W. N. Lipscomb, Acta Crystallogr. 18, 169 (1965).

    Article  CAS  Google Scholar 

  15. G. Bricogne, Molecular Replacement. Proceedings of the CCP4 Study Weekend, Pp. 62-75 (Eds. E. J. Dodson, S. Gover, and W. Wolf, Daresbury Laboratory Publications, 1992).

  16. B. Grushko, D. HollandMoritz, R. Wittmann, and G. Wilde, J. Alloys Compd. 280(1-2), 215 (1998).

    Article  CAS  Google Scholar 

  17. M. Doeblinger, R. Wittmann, D. Gerthsen, and B. Grushko, Submitted As Proceedings for the ICQ7 Conference in Stuttgart (2000).

    Google Scholar 

  18. Y. Yan, S. J. Pennycook, and A. P. Tsai, Phys. Rev. Lett. 81(23), 5145 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estermann, M.A., Lemster, K. & Steurer, W. Unraveling the Structure of Decagonal Approximants by “Brute Force” Deconvolution of the Experimental Autocorrelation Function. MRS Online Proceedings Library 643, 53 (2000). https://doi.org/10.1557/PROC-643-K5.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-643-K5.3

Navigation