Skip to main content
Log in

A Novel Method for True Work Function Determination of Metal Surfaces by Combined Kelvin Probe and Photoelectric Effect Measurements

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have developed a novel method for in-situ measurements of the true work function (ϕ) of metal surfaces by combined ultra-high vacuum compatible Kelvin Probe and photoelectric effect measurements. The work function is an extremely sensitive parameter of surface condition and can be used to study oxidation and thin film growth on metal surfaces. For example, the increase in ϕ due to oxidation of polycrystalline rhenium is 1.9eV.

The Kelvin Probe measures local work function differences between a conducting sample and a reference tip in a non-contact, truly non-invasive way over a wide temperature range. However, it is an inherentlyrelative technique and does not provide anabsolute work function if the work function of the tip (ϕtip) is unknown.

We present a novel approach to measure ϕtip with the Kelvin Probe via the photoelectric effect, using a Gd foil as the photoelectron source, hereby combining the advantages of both methods to provide the absolute work function of the sample surface. We demonstrate the application of the technique byin-situ work function measurements during oxidation of polycrystalline rhenium. The extended Kelvin Probe method therefore has potential applications as a characterisation tool for thin film epitaxy and work function engineering of surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Kelvin, Philos. Mag 46, 82 (1898).

    Article  Google Scholar 

  2. W. A. Zisman. Rev. Sci. Instrum. 3, 367 (1932).

    Article  Google Scholar 

  3. I. D. Baikie, K.O. Vanderwerf, H. Oerbekke, J. Broeze, A. Vansilthout, Rev. Sci. Instrum. 60, 930 (1989).

    Article  Google Scholar 

  4. I. D. Baikie, P.J. Estrup, Rev. Sci. Instrum. 69, 3902 (1998).

    Article  CAS  Google Scholar 

  5. M. Schmidt, H. Wolter, M. Nohlen, K. Wandelt, J. Vac. Sci Technol. A12, 1818 (1994).

    Article  Google Scholar 

  6. E. Kopatzki, H.G. Keck, I.D Baikie, J.A. Meyer, R.J. Behm, Surf. Sci. 345, L11 (1996)

    Article  CAS  Google Scholar 

  7. I. D. Baikie, U. Petermann, B. Lägel, Surf. Sci. 433-435, 770 (1999).

    Article  Google Scholar 

  8. I. D. Baikie, G.H Bruggink in Materials Reliability in Microelectronics III, edited by K.P. Rodbell, W.F. Filter, H.J. Frost, P.S. Po, (Mater. Res. Soc. Proc. 309, Pittsburgh, PA, 1993), pp.35–40

  9. I. D. Baikie in Chemical Perspectives of Microelectronic Materials II, edited by L.V. Interrante, K.F. Jensen, L.H. Dubois, M.E. Gross (Mater. Res. Soc. Proc. 204, Pittsburgh, PA, 1991), pp.363–368

  10. B. Lägel, I.D. Baikie, U. Petermann in Defect and Impurity Engineered Semiconductors and Devices II, edited by S. Ashok, J. Chevallier, K. Sumino, B.L. Sopori, W. Goetz, (Mater. Res. Soc. Proc. 510, Pittsburgh, PA, 1998), pp.619–625

  11. U. Petermann, I.D. Baikie, B. Lägel, Thin Solid Films 343-344, 492 (1999).

    Article  Google Scholar 

  12. I. D. Baikie, P.J.S. Smith, D.M. Porterfield, P.J. Estrup, Rev. Sci. Instrum. 70, 1842 (1999).

    Article  CAS  Google Scholar 

  13. L. Apker, E. Taft, J. Dickey, Phys. Rev. 73, 46 (1947).

    Article  Google Scholar 

  14. A. Danon, A. Amirav, Int. J. Mass Spectrom. Ion. Processes 96, 139 (1990).

    Article  CAS  Google Scholar 

  15. I. D. Baikie, S. Mackenzie, P.J.Z. Estrup and J.A. Meyer, Rev. Sci. Instrum. 62, 1326 (1991).

    Article  CAS  Google Scholar 

  16. R. H. Fowler, Phys. Rev. 33, 45 (1931).

    Article  Google Scholar 

  17. D. E. Eastman, Phys Rev. B2, 1 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lägel, B., Baikie, I.D., Dirscherl, K. et al. A Novel Method for True Work Function Determination of Metal Surfaces by Combined Kelvin Probe and Photoelectric Effect Measurements. MRS Online Proceedings Library 619, 73–78 (2000). https://doi.org/10.1557/PROC-619-73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-619-73

Navigation