Skip to main content
Log in

Physical and Electrical Properties of Yttrium Silicate Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This article reports on the physical and electrical properties of yttrium silicate, which is a possible high-k replacement for the SiO2 gate dielectric in CMOS devices. The yttrium silicate (Y-O-Si) films are formed by sputtering yttrium onto clean silicon, annealing in vacuum to form yttrium silicide and then oxidizing in N2O to form the silicate. Shifts in the Y 3d, Si 2p and O 1s photoelectron spectra with respect to Y2O3 and SiO2 indicate that the films are fully oxidized yttrium silicate. FTIR results that reveal a Si-O stretching mode at 950 cm−1 and Y-O stretching modes in the far-IR are consistent with XPS. XPS and FTIR results are in accordance with the donation of electron density from the yttrium to the Si-O bond in the silicate. The yttrium silicate films contain a fixed charge density of ∼9×1010 cm−2 negative charges as calculated from measured C-V behavior. The properties of ultra-thin yttrium silicate films with an equivalent silicon dioxide thickness (electrical) of ∼1.0 nm will be discussed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989).

    Google Scholar 

  2. M. Gurvitch, L. Manchanda, and J. M. Gibson, Appl. Phys. Lett. 51, 919–921 (1987).

    Article  CAS  Google Scholar 

  3. N. G. Batalieva and Y. A. Pyatenko, Zhurnal Strukturnoi Khimii 8, 548–549 (1967).

    CAS  Google Scholar 

  4. B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, Kristallografiya 15, 926–933 (1970).

    CAS  Google Scholar 

  5. J. D. Webster, M. E. Westwood, F. H. Hayes, R. J. Day, R. Taylor, A. Duran, M. Aparicio, K. Rebstock, and W. D. Vogel, J. European Ceram. Soc. 18, 2345–2350 (1998).

    Article  CAS  Google Scholar 

  6. S. P. Murarka and C. C. Chang, App. Phys. Lett. 37, 639–641 (1980).

    Article  CAS  Google Scholar 

  7. F. M. Dheurle, Thin Sol. Films 105, 285–292 (1983).

    Article  CAS  Google Scholar 

  8. S. P. Murarka, J. Vac. Sci. Technol. 17, 775, (1980).

    Article  CAS  Google Scholar 

  9. O. G. Alekseev, N. V. Krivosheev, M. Y. Khodos, V. R. Galakhov, V. V. Shumilov, V. M. Cherkashenko, E. Z. Kurmaev, and V. A. Gubanov, Inorg. Mater. 22, 1748–1751 (1986).

    Google Scholar 

  10. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992).

    Google Scholar 

  11. Y. Nigara, M. Ishigame, and T. Sakurai, J. Phys. Soc. Japan 30, 453, (1971).

    Article  CAS  Google Scholar 

  12. Y. K. Lee, N. Fujimura, and T. Ito, J. Alloys Compd. 193, 289–291 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, J.J., Parsons, G.N. Physical and Electrical Properties of Yttrium Silicate Thin Films. MRS Online Proceedings Library 611, 161 (1999). https://doi.org/10.1557/PROC-611-C1.6.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-611-C1.6.1

Navigation