Skip to main content
Log in

New High Resolution Liquid Crystal Electron Beam Resists

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report the development of a new family of electron beam resists based on liquid crystalline polysubstituted derivatives of triphenylene. These new resists show excellent performance in terms of both high resolution and high durability to plasma etching. Films of the derivatives have been produced in a controlled manner via room temperature spin coating on hydrogen terminated silicon substrates. The dissolution behaviour of the derivatives in various organic solvents was altered by exposure to a 20 keV electron beam. The solubility of the derivative hexapentyloxytriphenylene, in polar solvents, was substantially increased by electron doses greater than ∼ 3 × 10−4 C/cm2 (positive tone behaviour). Doses greater than ∼ 2.5 × 10−3 C/cm2 led to negative tone behaviour in both polar and non-polar solvents. Other derivatives also demonstrated a reduction in their dissolution rate for doses between ∼ 1 × 10−3 and ∼ 7 × 10−3 C/cm2. The derivative sensitivity was found to be roughly proportional to the molecular mass. Negative tone patterns were found to have an etch durability ∼ 70 % greater than that of a conventional novolac based negative tone resist (SAL601). The performance of these new resists has been demonstrated by the definition of line and space patterns with a resolution of ∼ 14 nm, whilst structures with an aspect ratio of.∼ 50 to 1 were etched into the silicon substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Di Fabrizio, L. Grella, M. Baciocchi, M. Gentili, C. Ascoli, B. Cappella, C. Frediani and P. Morales, J. Vac. Sci. Technol. B, 15, 2892 (1997).

    Article  Google Scholar 

  2. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama and H. Ishikawa, Appl. Phys. Lett., 71, 193 (1997).

    Article  CAS  Google Scholar 

  3. Y. Tang, W.-X. Ni, C.M. Sotomayor Torres and G.V. Hansson, Electronics Letters, 31, 1385 (1995).

    Article  CAS  Google Scholar 

  4. R.A. Smith and H. Ahmed, Appl. Phys. Lett., 71, 3838 (1997).

    Article  CAS  Google Scholar 

  5. H. Ishikuro and T. Hiramoto, Appl. Phys. Lett, 71, 3691 (1997).

    Article  CAS  Google Scholar 

  6. M.C. Peckerar, F.K. Perkins, E.A. Dobisz and O.J. Glembocki, Handbook of Microlithography, Micromachining and Microfabrication Vol. 1, P. Rai-Choudhury, ed., (IEE, London, 1997), p. 686.

  7. J.A. Rogers, K.E. Paul, R.J. Jackman and G.M. Whitesides, Appl. Phys. Lett., 70, 2658 (1997).

    Article  CAS  Google Scholar 

  8. M.A. McCord and M.J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication Vol. I, P. Rai-Choudhury, ed., (IEE, London, 1997), Ch. 2 p. 139–249.

  9. H. Namastu, K. Kurihara, M. Nagase and T. Makino, Appl. Phys. Lett., 70, 619 (1997).

    Article  Google Scholar 

  10. M. Yoshiiwa, H. Kageyama, Y. Shirota, F. Wakaya, K. Gamo and M. Takai, Appl. Phys. Lett., 69, 2605 (1996).

    Article  CAS  Google Scholar 

  11. T. Yamaguchi, H. Namatsu, M. Nagase, K. Yamazaki and K. Kurihara, Appl. Phys. Lett., 71, 2388 (1997).

    Article  CAS  Google Scholar 

  12. J. Fujita, Y. Ohnishi, Y. Ochiai and S. Matsui, Appl. Phys. Lett., 68, 1297 (1996).

    Article  CAS  Google Scholar 

  13. S. Manako, J. Fujita, Y. Ochiai, E. Nomura, S. Matsui, Jpn. J. Appl. Phys., 36, 7773 (1997).

    Article  CAS  Google Scholar 

  14. J. Fujita, H. Watanabe, Y. Ochiai, S. Manako, J.S. Tsai and S. Matsui, Appl. Phys. Lett., 66, 3064 (1995).

    Article  Google Scholar 

  15. T. Tada and T. Kanayama, Jpn. J. Appl. Phys., 35, L63 (1996).

    Article  CAS  Google Scholar 

  16. A.P.G. Robinson, R.E. Palmer, T. Tada, T. Kanayama and J.A. Preece, Appl. Phys. Lett., 72, 1302 (1998).

    Article  CAS  Google Scholar 

  17. A.P.G. Robinson, R.E. Palmer, T. Tada, T. Kanayama, J.A. Preece, D. Philp, U. Jonas and F. Deiderich, Chem. Phys. Lett., 289, 586 (1998).

    Article  CAS  Google Scholar 

  18. M.J. Lercel, H.G. Craighead, A.N. Parikh, K. Seshadri and D.L. Allara, Appl. Phys. Lett., 68, 1504 (1996).

    Article  CAS  Google Scholar 

  19. C.S. Whelan, M.J. Lercel, H.G. Craighead, K. Seshadri and D.L. Allara, Appl. Phys. Lett., 69, 4245 (1996).

    Article  CAS  Google Scholar 

  20. W. Chen and H. Ahmed, Appl. Phys. Lett., 62, 1499 (1993).

    Article  CAS  Google Scholar 

  21. W. Chen and H. Ahmed, Appl. Phys. Lett., 63, 1116 (1993).

    Article  CAS  Google Scholar 

  22. D.R.S. Cumming, S. Thoms, S.P. Beaumont and J.M.R. Weaver, Appl. Phys. Lett., 68, 322 (1996).

    Article  CAS  Google Scholar 

  23. A.P.G. Robinson, R.E. Palmer, T. Tada, T. Kanayama, M.T. Allen, J.A. Preece and K.D.M Harris, J. Phys. D., 32, L75 (1999).

    Article  CAS  Google Scholar 

  24. N. Boden, R.C. Borner, R.J. Bushby, A.N. Cammidge and M.V. Jesudason, Liquid Crystals, 15, 851 (1993).

    Article  CAS  Google Scholar 

  25. M. T. Allen, J.A. Preece and K.D.M Harris, Liquid Crystals, (In Press).

  26. S. Manako, J- I. Fujita, Y. Ochiai, E. Nomura and S. Matsui, Jpn. J. Appl. Phys., 36, 7773 (1997).

    Article  CAS  Google Scholar 

  27. T. Tada and T. Kanayama, J. Vac. Sci. Technol. B, 13, 2801 (1995).

    Article  CAS  Google Scholar 

  28. The contrast is equal to (log10(D2/D1))−1 where D2 and D1 are the doses at which the extrapolation of the linear section of the rising response curve intersects with the 100% and 0% levels for film retention, respectively.

Download references

Acknowledgments

The authors thank Drs. J. C. Barnard D. Philp for useful discussions. This work was supported in part by NEDO, through the management of ATP. APGR, MTA and REP thank the Engineering and Physical Sciences Research Council, UK, for financial support. APGR thanks NAIR, Japan, for financial support. The authors are grateful to the British Council for financial support of their UK-Japan research collaboration. JAP would like to acknowledge financial support from NATO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. G. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, A.P.G., Palmer, R.E., Tada, T. et al. New High Resolution Liquid Crystal Electron Beam Resists. MRS Online Proceedings Library 584, 129–134 (1999). https://doi.org/10.1557/PROC-584-129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-584-129

Navigation