Skip to main content
Log in

Anodic sulfidation and model characterisation of GaAs (100) in (NH4)2Sx solution

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Electrochemical sulfidation of n-type GaAs (100) has been investigated under anodic conditions with a view to surface passivation for improved electronic and optical properties. This treatment has successfully removed the native oxide and formed a thick layer of gallium and arsenic sulfides displaying high durability against oxidation and optical degradation compared to conventional dipping treatment using (NH4)2S solution. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and atomic force microscopy (AFM) have been used to characterize the treated surfaces. These studies have been used to devise a structural model of the near-surface region. The results of Raman backscattering spectroscopy measurements indicate that there is a 35% reduction of the surface barrier height compared to the untreated surface. This passivation technique has been shown to be effective in reducing surface band bending on GaAs (100) and enhancing the chemical stability of the surface, making it more suitable for electronic and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Malhotra, Electrochem. Soc. Proc. 2, 233 (1996).

    Google Scholar 

  2. V. N. Bessolov, M. V. Lebedev and D. R. T. Zahn, J. Appl. Phys. 82 (5), 2640 (1997).

    Article  CAS  Google Scholar 

  3. A. Kapila and V. Malhotra, IEEE, 0–7803–3374–8, 275 (1997).

    Google Scholar 

  4. V. N. Bessolov, E. V. Konenkova and M. V. Lebedev, Tech. Phys. Lett. 22 (9), 749 (1996).

    Google Scholar 

  5. M. S. Carpenter, M. R. Melloch and T. E. Dungan, Appl. Phys. Lett. 53 (1), 66 (1988).

    Article  CAS  Google Scholar 

  6. Z. S. Li, X. Y. Hou, W. Z. Cai, W. Wang, X. M. Ding, X. Wang, J. App. Phys. 78 (4), 2764 (1995).

    Article  CAS  Google Scholar 

  7. Z. S. Li, X. Y. Hou, W. Z. Cai, W. Wang, M. Zhang, G. S. Dong, X. Jin and X. Wang, Mat. Res. Soc. Symp. Proc. 284, 607 (1993).

    Article  CAS  Google Scholar 

  8. X. Y. Hou, W. Z. Cai, Z. Q. HE, P. H. Hao, Z. S. Li, X. M. Ding and X. Wang, App. Phys. Lett. 60 (18), 2252 (1992).

    Article  CAS  Google Scholar 

  9. D. J. Olego, R. Schachter, J. A. Baumann, Appl. Phys. Left. 45 (10), 1127 (1984).

    Article  CAS  Google Scholar 

  10. C. C. Chang, P. H. Citrin, B. Schwartz, J. Vac. Sci. Technol. 14 (4), 943 (1977).

    Article  Google Scholar 

  11. W. Z. Cai, Z. S. Li, R.Z. Su, G. S. Dong, D. M. Huang, X. M. Ding, X. Y. Hou and X. Wang, Appl. Phys. Lett. 64 (25), 3425 (1994).

    Article  Google Scholar 

  12. S. G. Ershov, A. F. Ivankov, V. V. Korablev and V. Yu. Tyukin, Tech. Phys. Lett. 22 (7), 561 (1996).

    Google Scholar 

  13. X. Hou, X. Chen, Z. Li, X. Ding and X. Wang, Appl. Phys. Lett. 69 (10), 1429 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbahnasawy, R.F., Mclnerney, J.G., Ryan, P. et al. Anodic sulfidation and model characterisation of GaAs (100) in (NH4)2Sx solution. MRS Online Proceedings Library 573, 265–270 (1999). https://doi.org/10.1557/PROC-573-265

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-573-265

Navigation