Skip to main content
Log in

The Growth of Homo-Epitaxial Silicon at Low Temperatures Using Hot Wire Chemical Vapor Deposition

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report on the first known growth of high-quality epitaxial Si via the hot wire chemical vapor deposition (HWCVD) method. This method yields epitaxial Si at the comparatively low temperatures of 195° to 450°C, and relatively high growth rates of 3 to 20 Å/sec. Layers up to 4500-Å thick have been grown. These epitaxial layers have been characterized by transmission electron microscopy (TEM), indicating large regions of nearly perfect atomic registration. Electron channeling patterns (ECPs) generated on a scanning electron microscope (SEM) have been used to characterize, as well as optimize the growth process. Electron beam induced current (EBIC) characterization has also been performed, indicating defect densities as low as 8×104/cm2. Secondary ion beam mass spectrometry (SIMS) data shows that these layers have reasonable impurity levels within the constraints of our current deposition system. Both n and p-type layers were grown, and p/n diodes have been fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohajerzadeh S., Selvakumar C. R., Brodie D. E., Robertson M. D. & Corbett J. M., Mat. Res. Soc. Symp. Proc. 388, 201–206 (1995).

    Article  CAS  Google Scholar 

  2. Anthony B., Breaux L., Hsu T., Bannerjee S. & Tasch A., J Vac. Sci. Technol. B. 7, (4): 621(1989).

    Article  CAS  Google Scholar 

  3. Molder S. M., Liu W. K., Ohtani N. & Joyce B. A. Appl. Phys. Lett 60, (18): 2255–2257 (1992).

    Article  Google Scholar 

  4. Chelly R., Werckmann J., Angot T., Louis P., Bolmont D. & Koulmann J. J. Thin Solid Films 294, 84–87 (1997).

    Article  CAS  Google Scholar 

  5. Ramana Murty M. V. & Atwater H. A. Phys. Rev. B 49, (12): 8483–8486 (1994).

    Article  Google Scholar 

  6. Sedgwick T. O., Agnello P. D., Berkenblit M. & Kuan T. S. Low-Temperature Selective Epitaxial Growth of Silicon at Atmospheric Pressure in an Ultra-clean System. Preprint

  7. Kobayashi K., Fukumoto K., Katayama T., Higaki T. & Abe H., 1992 Intl. Conf. on Solid State Devices and Materials 17-19 (1992).

  8. Meyerson B. inventor. Method and Apparatus for Low Temperature, Low Pressure Chemical Vapor Deposition of Epitaxial Silicon Layers. US. Pat. No., 5,298,452. (1994). 1

  9. Thompson P. E., Twigg M. E., Godbey D. J. & Hobart K. D., J Vac. Sci. Technol. B 11, (3): 1077–1082 (1999).

    Article  Google Scholar 

  10. Ramm J., Beck E., Dommann A., Eisele I. & Kruger D., Thin Solid Films 246, 158–163 (1994).

    Article  CAS  Google Scholar 

  11. Violette K. E., O’Neil P. A., Ozturk M. C., Christensen K. & Maher D. M., ElectroChem. Soc. Proc. 96 5, 375–379 (1999).

    Google Scholar 

  12. Varhue W. J., Andry P. S., Rogers J. L., Adams E., Kontra R. & Lavoie M., Solid State Technology 163–170 (1996).

    Google Scholar 

  13. Oshima T., Sano M., Yamada A., Konagai M. & Takahashi K., Appl. Surface Sci. 79/80, 215–219 (1994).

    Article  Google Scholar 

  14. Ohmi T., Hashimoto K., Morita M. & Shibata T.,. J. Appl. Phys 69, (4): 2062–2071 (1991).

    Article  CAS  Google Scholar 

  15. Kasai N. & Endo N., J Electrochem. Soc. 139, (7): 1983–1987 (1987).

    Article  Google Scholar 

  16. Lips K. Low Temperature Homoepitaxial Si Growth using ECR Remote Plasma.Hans Meitner Institut: (1999). Presentation of Work

    Google Scholar 

  17. Eaglesham D. J., Gossman H. J. & Cerullo M., Phyiscal Review Letters 65, (10): 1227–1230 (1990).

    Article  CAS  Google Scholar 

  18. Molenbroek E. & Mahan A., J. Applied Physics 82, (4): 1909–1917 (1998).

    Article  Google Scholar 

  19. Molenbroek E. C. Deposition of Hydrogenated Amorphous Silicon with the Hot Wire Technique. (1995).University of Colorado. 1 p.

    Google Scholar 

  20. Doyle J., Robertson G. H., Lin M. Z. & Gallagher A. J Appl. Phys 64, (6): 3215–3222 (1988).

    Article  CAS  Google Scholar 

  21. Sutoh A., Okada Y., Ohta S. & Kawabe M., Jap. J. Applied Physics 34, (Part2, 10b): L1379-L1382 (1995).

    Article  CAS  Google Scholar 

  22. Brogueira P., Conde J. P., Arekat S. & Chu V., J. Appl. Phys. 78, (6): 3776–3783 (1995).

    Article  CAS  Google Scholar 

  23. Heintze M., Zedlitz R., Wanka H. N. & Schubert M. B., J Applied Physics 79, (5): 2699–2706 (1996).

    Article  CAS  Google Scholar 

  24. Gupta P., Colvin V. L. & George S. M., Physical Review B 37, (14): 8234–8243 (1988).

    Article  CAS  Google Scholar 

  25. Northrup J., Phys. Rev. B Rapid Communications 44, (3): 1419–1422 (1991).

    Article  CAS  Google Scholar 

  26. Ishiazaka A. & Shiraki Y., J. Electrochem. Soc. 133, (4): 666–671 (1986).

    Article  Google Scholar 

  27. Matson R., Thiesen J., Crandall R. S.et al., The Use of Electron Channeling Patterns for Process Optimization of Low Temperature Epitaxial Silicon Using How Wire Chemical Vapor Deposition.Materials Research Society. Spring Symp. Session V.(1999).

    Google Scholar 

  28. Taylor M. E. & Atwater H. A.. Surface Science 127-129, 159–163 (1998).

    Article  CAS  Google Scholar 

  29. Murty M. V. R. & Atwater H. A., Surface Science 374, 283–290 (1997).

    Article  Google Scholar 

  30. Boland I. J. & Parsons G. N., Science 256, 1304–1306 (1992).

    Article  CAS  Google Scholar 

  31. Pearton S. J., International Journal of Modern Physics 8, (9): 1093–1158 (1994).

    Article  CAS  Google Scholar 

  32. Johnson N. M., Doland C., Ponce F., Walker J. & Anderson G., Physica b 170, 3–20 (1991).

    Article  CAS  Google Scholar 

  33. Boland J., Surface Science 261, 17–28 (1992).

    Article  CAS  Google Scholar 

  34. Niwano M., Terashi M. & Kuge J., Surface Science 420, 6–16 (1999).

    Article  CAS  Google Scholar 

  35. CS Office Pro. CambridgeSoft Corp. (3.0):Cambridge, Ma. CambridgeSoft Corp. (1999).

  36. Heyman J., Ager J. W.E., Haller E., Johnson N. M., Walker J. & Doland C. M., Phys Rev. B. 45, (23):- 13363–13366 (1992).

    Article  CAS  Google Scholar 

  37. Doris B., Fretwell J., Erskine J. L. & Bannerjee S. K., Appl. Phys. Lett. 70, (21): 2819–2821 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiesen, J., Jones, K.M., Matson, R. et al. The Growth of Homo-Epitaxial Silicon at Low Temperatures Using Hot Wire Chemical Vapor Deposition. MRS Online Proceedings Library 570, 261–271 (1999). https://doi.org/10.1557/PROC-570-261

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-570-261

Navigation