Skip to main content
Log in

Early Osteoblast Attachment, Spreading, and Focal Adhesions on RGD Coated Surfaces

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Cells recognize and interact with the extracellular matrix (ECM) through heterodimeric receptors known as integrins. The objective of our work is to immobilize integrin-stimulating peptides to bone-contacting implants in order to control cellular activity and response.

We have previously demonstrated that cysteine (C) containing peptides self-assemble onto gold-coated substrates. Investigations have focused on the RGD (Arg-Gly-Asp) peptide sequence since it is found in several bone ECM proteins. Gold was first coated onto glass coverslips by evaporation and the peptide was applied in a 0.22 mM solution. Contact angle and surface plasmon resonance verified RGDC peptide attachment and formation of a monolayer.

Rat calvarial osteoblasts isolated from six-day-old rat pups were used from passages one to three. Cell attachment at 20 minutes is 100% greater on RGDC than on CG (control peptides) or plain gold surfaces. Cells on RGDC also stain positively for vinculin, a protein which is present in focal adhesions (functional structures into which integrins assemble) whereas surfaces without integrin stimulating peptides do not. Scanning electron micrographs show cells to be more spread and have more processes at 20 minutes, 1, 3, and 24 hours on RGDC. Live video images of these surfaces from zero to three hours after plating confirmed earlier and greater cell spreading on RGDC.

Ongoing in vitro experiments are investigating the long-term response of osteoblasts to RGDC and other immobilized peptides in terms of differentiation, matrix production, and integrin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hynes, Cell 69 (1): p. 11–25 (1992).

    Article  CAS  Google Scholar 

  2. N. Wang, J. Butler, and D. Ingber, Science 260: p. 1124–1127 (1993).

    Article  CAS  Google Scholar 

  3. A. Rezania, et al., J of Biomedical Materials Research 37: p. 9–19 (1997).

    Article  CAS  Google Scholar 

  4. J. Clover, R. Dodds, and M. Gowen, Journal of Cell Science 103: p. 267–271 (1992).

    CAS  Google Scholar 

  5. W. Grzesik and P. Robey, J Bone Mineral Research 9 (4): p. 487–496 (1994).

    Article  CAS  Google Scholar 

  6. M. Pierschbacher and E. Ruoslahti, Nature 309 (3): p. 30–33 (1984).

    Article  CAS  Google Scholar 

  7. E. Ruoslahti and M. Pierschbacher, Science 238: p. 491–497 (1987).

    Article  CAS  Google Scholar 

  8. C. Bain and G. Whitesides, Science 240: p. 62–63 (1988).

    Article  CAS  Google Scholar 

  9. C. Bain, J. Evall, and G. Whitesides, Journal of the American Chemical Society 111: p. 7155–7164 (1989).

    Article  CAS  Google Scholar 

  10. C. Duschl, et al., Biophysical Journal 67: p. 1229–1237 (1994).

    Article  CAS  Google Scholar 

  11. C. Duschl, M. Liley, and H. Vogel, Agnew. Chem. Int. Ed. Engl. 33 (12): p. 1274–1276 (1994).

    Article  Google Scholar 

  12. H. Morgan and D. Taylor, Biosensors and Bioelectronics 7: p. 405–410 (1992).

    Article  CAS  Google Scholar 

  13. K. Prime and G. Whitesides, Science 252: p. 1164–1166 (1991).

    Article  CAS  Google Scholar 

  14. R. Singhvi, et al., Science 264: p. 696–698 (1994).

    Article  CAS  Google Scholar 

  15. E. Sacher, Surface Characterization of Bioinaterials, ed. B. Ratner., Elsevier Science Publishing Company, New York, New York, 1988, 53–64.

  16. D. Kaelble, P. Dynes, and E. Cirlin, Journal of Adhesion 6: p. 23–48 (1974).

    Article  CAS  Google Scholar 

  17. D. Kaelble, Journal of Adhesion 2: p. 66–81 (1970).

    Article  CAS  Google Scholar 

  18. M. Aronow, et al., Journal of Cellular Physiology 143: p. 213–221 (1990).

    Article  CAS  Google Scholar 

  19. G. Schneider and K. Burridge, Experimental Cell Research 214: p. 264–269 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moodie, G.D., Ferris, D.M., Hertzog, B.A. et al. Early Osteoblast Attachment, Spreading, and Focal Adhesions on RGD Coated Surfaces. MRS Online Proceedings Library 550, 207–214 (1998). https://doi.org/10.1557/PROC-550-207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-550-207

Navigation