Skip to main content
Log in

Solution Delivery for Copper CVD Using Cu(HFAC)2 Reduction

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have developed a solution delivery technique for performing copper CVD using the reduction of Cu(hfac)2 [where H(hfac) = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionel. We have obtained deposition rates of up to 3.6 mg cm−2 hr−1 (ca. 60 nm min−1) for a deposition temperature of 300 °C and reactor conditions of 40 Torr H2, 12 Torr isopropanol, and 1 Torr Cu(hfac)2. The increased rates are several times faster than growth rates observed using conventional Cu(hfac)2 sublimation with pure H2 as the carrier gas. We compare growth rates and film microstructure using TiN- and WNx-coated substrates. We also give preliminary results showing how the partial pressures of H2, i-PrOH, and Cu(hfac)2 each influence the deposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Li, R. Blewer, and J.W. Mayer, MRS Bull. 18 (6), 18 (1993).

    Article  Google Scholar 

  2. J. Li, T.E. Seidel, and J.W. Mayer, MRS Bull. 19 (8), 15 (1994).

    Article  CAS  Google Scholar 

  3. T.L. Alford, J. Li, J.W. Mayer, and S.-Q. Wang, Thin Solid Films 262, vii (1995).

    Article  Google Scholar 

  4. P. Singer, Semiconductor International 20 (13), 67 (1997).

    Google Scholar 

  5. M.J. Hampden-Smith and T.T. Kodas, in The Chemistry of Metal CVD, edited by T.T. Kodas and M.J. Hampden-Smith (VCH Verlagsgesellschaft mbH, Weinheim, 1994), p 239.

  6. G.L. Griffin and A.W. Maverick, in The Chemistry of Metal CVD, edited by T.T. Kodas and M.J. Hampden-Smith (VCH Verlagsgesellschaft mbH, Weinheim, 1994), p 175.

  7. N. Awaya and Y. Arita, Jpn J. Appl. Phys. Pt. 1, 32, 3915 (1993).

    Google Scholar 

  8. R.D. Pilkington, P.A. Jones, W. Ahmed, R.D. Tomlinson, A.E. Hill, J.J. Smith, and R. Nutall, J. de Phys. IV, Coll. C2, 1, 263 (1991).

    Google Scholar 

  9. C.-C. Cho, in Tungsten and other Advanced Metals for ULSI Applications V, edited by G.C. Smith and R. Blumenthal (Materials Research Society, Pittsburgh, 1991), p 189.

  10. N.S. Borgharkar, G.L. Griffin, A. James, and A.W. Maverick, Thin Solid Films (in press).

  11. N.S. Borgharkar and G.L. Griffin, J. Electrochem. Soc. 145 347 (1998).

    Article  CAS  Google Scholar 

  12. J.F. Loan and J.J. Sullivan, Semiconductor Intnl., 18 (8), 239 (1995).

    CAS  Google Scholar 

  13. N. Awaya and Y. Arita, Thin Solid Films, 262, 12 (1995).

    Article  CAS  Google Scholar 

  14. B. Zheng, E.T. Eisenbraun, J. Liu, and A.E. Kaloyeros, Appl. Phys. Lett. 61, 2175 (1992).

    Article  CAS  Google Scholar 

  15. D.W. Studiner, J.T. Hillman, R. Arora, and R.F. Foster, in Advanced Metallization for ULSI Applications 1992. edited by T.S. Cale and F.S. Pintchovski, (Materials Research Society, Pittsburgh, PA, 1993) p 211.

  16. J.-P. Lu, W.Y. Hsu, J.D. Luttmer, L.K. Masgel, and H.L. Tsai, J. Electrochem. Soc., 145, L21 (1998).

    Article  CAS  Google Scholar 

  17. G.L. Griffin, N.S. Borgharkar, H. Fan, and A.W. Maverick, in Advanced Metallization and Interconnect Systems for ULSI Applications in 1997, edited by R. Cheung, J. Klein, K. Tsubouchi, M. Murakami, and N. Kobayashi (Materials Research Society, Warrendale PA, 1998) pp469–473.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C., Borgharkar, N.S., Griffin, G.L. et al. Solution Delivery for Copper CVD Using Cu(HFAC)2 Reduction. MRS Online Proceedings Library 514, 315–320 (1998). https://doi.org/10.1557/PROC-514-315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-514-315

Navigation