Skip to main content
Log in

Direct Wafer Bonding and Layer Transfer: An Innovative way for the Integration of Ferroelectric Oxides into Silicon Technology

MRS Online Proceedings Library Aims and scope

Abstract

An innovative fabrication process of ferroelectric-semiconductor heterostructures based on direct wafer bonding has been demonstrated. Ferroelectric thin films of Bi4Ti3O12 (BiT) and Pb(Zr,Ti)O3 (PZT) were deposited on 3” Si wafers using chemical solution deposition (CSD) and subsequently crystallized by conventional and rapid thermal annealing. The films were then polished in order to reach a roughness and waviness suitable for bonding. They were then directly bonded to silicon wafers in a micro-cleanroom and annealed in air at temperatures ranging from 200°C to 500°C. Bonding energies up to 1.5 J/m2 have been achieved which is almost high enough to consider the two bonded wafers as a single body. Metal-Ferroelectric-Silicon (MFS) structures containing the ferroelectric-Si bonded interface were accomplished by polishing down and etching the handling wafer. The MFS structures were electrically characterized by capacitance-voltage (C-V) and charge-voltage (Q-V) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Scott and C. A. Paz de Araujo, Science 246, 1400 (1989).

    Article  CAS  Google Scholar 

  2. T. Sumi, et al., Integrated Ferroelectrics 6, 1 (1995).

    Article  CAS  Google Scholar 

  3. M. Shimbo, K. Furukawa, K. Fukuda and T. Tanazawa, J. Appl. Phys. 60, 2987 (1986).

    Article  CAS  Google Scholar 

  4. U. Gösele, H. Stenzel, M. Reiche, T. Martini, H. Steinkirchner, and Q.-Y. Tong, Solid State Phenomena 47-48, 33 (1996).

    Article  Google Scholar 

  5. M. Alexe, G. Kästner, D. Hesse, and U. GÖsele, Appl. Phys. Lett. 70, 3416 (1997).

    Article  CAS  Google Scholar 

  6. M. Alexe, J. F. Scott, A. Pignolet, D. Hesse, and U. Gösele, Integrated Ferroelectrics, in press

  7. M. Alexe, A. Pignolet, S. Senz, and D. Hesse, Ferroelectrics 201, 157 (1997).

    Article  CAS  Google Scholar 

  8. R. Stengl, K.-Y. Ahn, and U Gösele, Jpn. J. Appl. Phys. 27, 236 (1988).

    Article  Google Scholar 

  9. E.H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley, New York, 1982.

    Google Scholar 

  10. J. F. Scottet al., Integrated Ferroelectrics 4, 85 (1994).

    Article  CAS  Google Scholar 

  11. H. D. Chen, K. R. Udayakumar, K. L. Li, C. J. Gaskey, and L. E. Cross, Integrated Ferroelectrics 15, 89 (1997).

    Article  CAS  Google Scholar 

  12. N.M. Shorrocks, A. Patel, and R.W. Whatmore, Ferroelectrics 134, 343 (1992).

    Article  Google Scholar 

  13. A. Pignolet, C. Curran, S. Welke, M. Alexe, S. Senz, D. Hesse, U. Gösele, Proc. 2nd European Meeting on Integrated Ferroelectrics, Jouy-en-Josas, France, Sept. 1997, to be published in Journal de Physique.

    Google Scholar 

Download references

Acknowledgement

We thank Dr. N.D. Zakharov for the HREM micrographs. One of us (J.F.S.) appreciated support by a Senior Scientist Award by Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexe, M., Senz, S., Pignolet, A. et al. Direct Wafer Bonding and Layer Transfer: An Innovative way for the Integration of Ferroelectric Oxides into Silicon Technology. MRS Online Proceedings Library 493, 517–522 (1997). https://doi.org/10.1557/PROC-493-517

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-493-517

Navigation