Skip to main content
Log in

Comparison of Experimental with Theoretical Melting of the Yeast Genome and Individual Yeast Chromosome Denaturation Mapping Using the Program Meltsim

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The yeast S. cereviseae represents the first eukaryotic organism whose genome has been entirely sequenced as a result of the Human Genome Project(1). In this report we demonstrate the good agreement between an experimental high resolution melting curve of total nuclear S. cereviseae DNA and the theoretical melting calculated for the complete yeast DNA genome (12,067,277 bp: Saccharomyces Genome Database) by the statistical thermodynamics program MELTSIM, parameterized for long DNA sequences(2,3). The experimental and theoretical melting curves are both fairly symmetrical and possess nearly identical Tm values. Calculated melting of coding and flanking DNA regions indicates that flanking DNAs are more (A+T)-rich than coding sequences and account for the earliest melting DNA. Calculated melting curves of the 16 individual yeast chromosomes are very similar and with few exceptions exhibit symmetric melting curves. MELTSIM was also used to calculate a theoretical denaturation map of Chromosome III DNA. The agreement between MELTSIM calculated and experimental melting data demonstrates our ability to accurately simulate long DNA sequence melting in complex eukaryotic genomes, whose sequences are becoming increasingly available for study in public databases. This has important consequences for the understanding of sequence dependent energetic properties of DNA in their biological sequence context and also for their potential use in biomaterials applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Http:llgenome-www.stanford.edu/

  2. Delcourt S.G.and Blake R.D., J. Biol. Chem., 266, 15160–5169 (1991).

    CAS  Google Scholar 

  3. Blake, R.D. in Encyclopedia of Molecular Biology and Molecular Medicine, Volume 2, (R.A. Myers, ed.) VCH Publ., Basel, 1–18 (1996).

  4. Marx, K.A. Lira, J.O. Minehan, D. Pande, R. Kamath, M. and Tripathy, S. J. Intel. Material Systems and Structures, 5, 447–454 (1994).

    Article  CAS  Google Scholar 

  5. Ftp:llgenome-ftp.stanford.edulpublyeastlgenome_seq/

  6. Marx, K.A., BizzaroI, J.W., Assiland, I Blake, R.D., Proc. Materials Research Soc.: Statistical Mechanics in Physics and Biology, (MRS, Pittsburgh, PA), 463, 147–152 (1997).

    Article  CAS  Google Scholar 

  7. Polandand, D., Scheraga, H.A. Theory of Helix-Coil Transitions in Biopolymers, Academic Press, New York, (1970).

    Google Scholar 

  8. Poland, D. Biopolymers, 13, 1859–1871 (1974).

    Article  CAS  Google Scholar 

  9. Fixman, M. and Friere, J. Biopolymers, 16, 2693–2704 (1977).

    Article  CAS  Google Scholar 

  10. Blake, R.D. and Hydom, T.G. J. Biochem. Biophys. Methods, 11, 307–316 (1985).

    Article  CAS  Google Scholar 

  11. Yen, S-W.W. and Blake, R.D. Biopolymers, 19, 681–700 (1980).

    Article  CAS  Google Scholar 

  12. Ising, E. Physik, 31, 253 (1925).

    Article  CAS  Google Scholar 

  13. Hill, T.L. Statistical Mechanics, McGraw-Hill, New York (1956).

    Google Scholar 

  14. Wartelland, R.M. Benight, A.S. Physics Rep., 126, 67–107 (1985).

    Article  Google Scholar 

  15. Kunkel, T.A. and Bebanek, K. Biochim. Biophys. Acta., 951, 1–15 (1988).

    Article  CAS  Google Scholar 

  16. Marx, K.A. Hess, S.T. and Blake, R.D. J. Biomol. Str. & Dyn., 11, 57–66 (1993).

    Article  CAS  Google Scholar 

  17. Marx, K.A. Hessand, S.T. Blake, R.D. J. Biomol. Str. & Dyn., 12, 235–246 (1994).

    Article  CAS  Google Scholar 

  18. Sharp, P.M. and Lloyd, A.T. Nucleic Acids Research, 21, 179–183 (1993).

    Article  CAS  Google Scholar 

  19. Oliver, S.G. et al., Nature, 357, 38–46 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support from the Center for Intelligent Biomaterials at the University of Massachusetts.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizzaro, J.W., Marx, K.A. & Blake, R.D. Comparison of Experimental with Theoretical Melting of the Yeast Genome and Individual Yeast Chromosome Denaturation Mapping Using the Program Meltsim. MRS Online Proceedings Library 489, 73–77 (1997). https://doi.org/10.1557/PROC-489-73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-489-73

Navigation