Skip to main content
Log in

Adhesion Assessment of Copper Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nano-indentation testing has been used to quantitatively assess the adhesion of thin copper films, sputtered to thicknesses of 150 nm to 1500 nm. Copper films of low residual stress were deposited via RF diode cathode sputtering onto SiO2/Si substrates. Overlayers of DC magnetron sputtered high residual stress tungsten, 850 nm thick, were additionally used to provide a driving force for delamination. All films tested exhibited buckle-driven delamination, from which the interfacial toughness was estimated to be 0.2–2 J/m2, which is comparable to the thermodynamic work of adhesion. The use of an overlayer requires extensions of existing models, but otherwise does not change the interfacial adhesion, allowing measurements of films that would not otherwise delaminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Rice, J. Appl. Mech., 55, 98–103 (1988).

    Article  Google Scholar 

  2. H.C. Cao and A.G. Evans, Acta metall., 39, 2997 (1991).

    Article  CAS  Google Scholar 

  3. A.G. Evans and B.J. Dalgleish, Mater. Sci. & Eng., A162, 1 (1993).

    Article  CAS  Google Scholar 

  4. A.G. Evans, M. Riihle, B.J. Dalgleish, and P.G. Charalambides, Mater. Sci. & Eng., A126, 53–64 (1990).

    Article  CAS  Google Scholar 

  5. M.D. Thouless, A.G. Evans, M.F. Ashby, and J.W. Hutchinson, Acta metall., 35, 1333 (1987).

    Article  CAS  Google Scholar 

  6. Z. Suo and J.W. Hutchinson, Int. J. of Frac, 43, 1 (1990).

    Article  Google Scholar 

  7. J.W. Hutchinson, M.D. Thouless, and E.G. Liniger, Acta metall., 40, 295 (1992).

    Article  CAS  Google Scholar 

  8. M.D. Thouless, J.W. Hutchinson, and E.G. Liniger, Acta metall., 40, 2639–2649 (1992).

    Article  Google Scholar 

  9. A.G. Evans, M.D. Drory, and M.S. Hu, J. Mater. Res., 3, 1043–1049 (1988).

    Article  CAS  Google Scholar 

  10. H.M. Jensen, J.W. Hutchinson, and K.-S. Kim, Int. J. Sol. Struc, 26, 1099–1114 (1990).

    Article  Google Scholar 

  11. H.M. Jensen and M.D. Thouless, Int. J. Sol. Struc, 30, 779 (1993).

    Article  Google Scholar 

  12. H.C. Cao and A.G. Evans, Mechanics of Materials, 7, 295–304 (1989).

    Article  Google Scholar 

  13. D.B. Marshall and A.G. Evans, J. Appl. Phys., 56, 2632–2638 (1984).

    Article  CAS  Google Scholar 

  14. J.W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, in Advances in Applied Mechanics (Academic Press, Inc., New York, 1992), p. 63–169.

    Google Scholar 

  15. A. Bagchi, G.E. Lucas, Z. Suo, and A.G. Evans, J. Mater. Res., 9, 1734 (1994).

    Article  CAS  Google Scholar 

  16. N.R. Moody, R.Q. Hwang, J.E. Angelo, S. Venkataraman, and W.W. Gerberich, submitted to Acta Materialia (1997).

    Google Scholar 

  17. D.F. Bahr, J.W. Hoehn, N.R. Moody, and W.W. Gerberich, submitted to Acta Materialia (1997).

    Google Scholar 

  18. M. Ohring, in The Materials Science of Thin Films, (Academic Press, New York, 1992).

    Google Scholar 

  19. G.C. Stoney, Proc. R. Soc. London, A82, 172 (1909).

    Google Scholar 

  20. M. A. Meyers and K.K. Chawla, in Mechanical Metallurgy- Principles and Applications (Prentice-Hall Inc., Englewood Cliffs, NJ, 1984).

    Google Scholar 

  21. W.C. Oliver and G.M. Pharr, J. Mater. Res., 7, 564 (1992).

    Article  Google Scholar 

  22. C. Rossington, A.G. Evans, D.B. Marshall, and B.T. Khuri-Takub, J. Appl. Phys., 56, 2639–2644 (1984).

    Article  CAS  Google Scholar 

  23. T.F. Page and S.V. Hainsworth, Surfaces and Coatings, 561, 201 (1993).

    Article  Google Scholar 

  24. L.G. Rosenfield, J.E. Ritter, T.J. Lardner, and M.R. Lin, J. Appl. Phys., 67, 3291–3296 (1990).

    Article  Google Scholar 

  25. J.L. Loubet, J.M. Georges, and P. Kapsa, in Proc. of the 16th Leeds-Lyon Symposium on Tribology, edited by D. Dowson, (Elsevier, Lyon, France, 1990), p. 429.

  26. F.P. Beer and E.R. JohnstonJr, in Mechanics of Materials (McGraw-Hill, New York, 1981).

    Google Scholar 

  27. B.D. Agarwal and L.J. Broutman, in Analysis and Performance of Fiber Composites (John Wiley & Sons, Inc., 1990).

    Google Scholar 

  28. K.L. Johnson, in Contact Mechanics (Cambridge University Press, New York, 1985).

    Book  Google Scholar 

  29. T.S. Oh, J. Rodel, R.M. Cannon, and R.O. Ritchie, Acta metall., 36, 2083 (1988).

    Article  CAS  Google Scholar 

  30. J.R. Rice and J.S. Wang, Mater. Sci. & Eng., A107, 23 (1989).

    Article  CAS  Google Scholar 

  31. D.R. Lide, in 73rd ed., (CRC Press, 1993), p. Pages.

  32. B. Lawn, in Fracture of Brittle Solids (Cambridge University Press, 1993).

    Book  Google Scholar 

  33. J.W. Hoehn, Ph.D. Thesis, University of Minnesota, 1996.

Download references

Acknowledgement

M. Kriese thanks the University of Minnesota Microtechnology Laboratory and in particular Tony Whipple for his tremendous help with sample preparation, as well D. Bahr, D. Kramer and M. deBoer for their valuable assistance. M. Kriese, N.R. Moody and W.W. Gerberich gratefully acknowledge the support of the Center for Interfacial Engineering at the University of Minnesota under grant NSF/CDR-8721551 and the Department of Energy under DOEs/DEFG02/96ER45574.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriese, M.D., Moody, N.R. & Gerberich, W.W. Adhesion Assessment of Copper Thin Films. MRS Online Proceedings Library 473, 39–49 (1997). https://doi.org/10.1557/PROC-473-39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-473-39

Navigation