Skip to main content
Log in

Emission Mechanism of the InGaN MQW Grown by MOCVD

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Dynamical behavior of radiative recombination has been assessed in the In0.20Ga0.80N (3nm)/In0.05Ga0.95N (6 nm) multiple quantum well (MQW) structure by means of transmittance (TR), electroreflectance (ER), photoluminescence excitation (PLE) and time-resolved photoluminescence (TRPL) spectroscopy. The PL at 20 K was mainly composed of two emission bands whose peaks are located at 2.920 eV and 3.155 eV. The ER and PLE revealed that the transition at 3.155 eV is due to the excitons at quantized level between n=1 conduction and n=1 A(Γ) valence bands, while the main PL peak at 2.920 eV is attributed to the excitons localized at the trap centers within the well. The TRPL features were well understood as the effect of localization where photo-generated excitons are transferred from the n=1 band to the localized centers, and then are localized further to the tail state. The origin of the localized centers were attributed to the In-rich region in the wells acting as quantum dots which could be observed by transmission electron microscopy (TEM) and energy-dispersive X-ray microanalysis (EDX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).

    Article  CAS  Google Scholar 

  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).

    Article  CAS  Google Scholar 

  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L217 (1996).

    Article  CAS  Google Scholar 

  4. I. Akasaki, S. Sota, H. Sakai, T. Tanaka, M. Koike, and H. Amano, Electron. Lett. 32, 1105 (1996).

    Article  CAS  Google Scholar 

  5. K. Itaya et al., Jpn. J. Appl. Phys. 35, L1315 (1996).

    Article  CAS  Google Scholar 

  6. S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, J. Appl. Phys. 79, 2784 (1996).

    Article  CAS  Google Scholar 

  7. Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita and S. Nakamura, in press Phys. Rev.B

  8. Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita and S. Nakamura, submitted to Appl. Phys. Lett.

  9. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).

    Article  Google Scholar 

  10. K. Okada, Y. Yamada, T. Taguchi, F. Sakaki, S. Kobayashi, T. Tani, S. Nakamura and G. Shinomiya, Jpn. J. Appl. Phys. 35, L787 (1996).

    Article  CAS  Google Scholar 

  11. Y. Kawakami, Z. G. Peng, Y. Narukawa, Sz. Fujita, Sg. Fujita and S. Nakamura, Appl. Phys. Lett. 69, 1414 (1996).

    Article  CAS  Google Scholar 

  12. M. Sugawara, Jpn. J. Appl. Phys. 35, 124 (1996).

    Article  CAS  Google Scholar 

  13. S. Chichibu T. Azuhata, T. Sota and S. Nakamura, presented at 30th Electronic Materials Conference, W-10, June 26–28, Santa Barbara, (1996).

    Google Scholar 

  14. S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, in press Appl. Phys. Lett.

  15. The value of alloy broadening can be estimated by taking into account the standard deviation of alloy composition within the volume of excitons. See for example: R. Zimmerman, J. Cryst. Growth 101, 346(1990).

    Article  Google Scholar 

  16. D. E. Aspnes and J. E. Rowe, Phys. Rev. Lett. 27, 188 (1971).

    Article  CAS  Google Scholar 

  17. R. Dingle, D. D. Sell, S. E. Stokowski and M. Ilegems, Phys. Rev. B4, 1211(1971).

    Article  Google Scholar 

  18. B. Gil, O. Briot and R. Aulombard Phys. Rev. B52, R17028 (1995).

    Article  Google Scholar 

  19. C. Gourdon and P. Lavallard, Phys. Stat. Solidi, (b) 153, 641 (1989).

    Article  CAS  Google Scholar 

  20. S. Yamaguchi, Y. Kawakami, Sz. Fujita, Sg. Fujita, Y. Yamada, T. Mishina and Y. Masumoto, Phys. Rev. B 54, 2629 (1996).

    Article  Google Scholar 

  21. This range corresponds to the angle of 30 °.

  22. This method was reported to be effective to characterize the self-formed In0.5Ga0.5 As quantum dots. See for example,K. Mukai, N. Ohtsuka, M. Sugawara and S. Yamazaki, Jpn. J. Appl. Phys. 33, L1710 (1994).

    Article  CAS  Google Scholar 

  23. Large localization of excitons is also reported in the InGaN single epilayer.:T. Taguchi, T. Maeda, Y. Yamada, S. Nakamura and G. Shinomiya, Proc. of Intern. Symp. on Blue Laser and Light Emitting Diodes, Chiba Univ., Japan, March 5–7, 372 (1996).

    Google Scholar 

  24. I-hisu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narukawa, Y., Kawakami, Y., Fujita, S. et al. Emission Mechanism of the InGaN MQW Grown by MOCVD. MRS Online Proceedings Library 449, 665–670 (1996). https://doi.org/10.1557/PROC-449-665

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-449-665

Navigation