Skip to main content
Log in

X-Ray Absorption Fine Structure Applied to the Study of Systems with Lattice Instabilities

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present a simplified model of electrons and phonons in a three-site cluster as a paradigm of a system exhibiting a lattice instability. We point out the utility of X-ray absorption fine structure (XAFS) in the study of materials where the coupling between electrons and phonons leads to the appearance of such lattice instabilities. As examples of these systems, we present X-ray absorption fine structure (XAFS) measurements on magnetic manganese oxide materials and II-VI semiconductors. Both of these systems exhibit local lattice instabilities which are reflected in the transport properties. In the case of the manganese oxide La0.67Ca0.33MnO3 we observe a change in the Mn-O local structure accompanying the ferromagnetic and metal-insulator transitions. For In doped CdTe we observe the appearance of a lattice distortion centered at the Cd atoms as the In concentration is increased. This distortion is associated with the trapping of free charge carriers, leading to the saturation of the conductivity as the In concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bussmann-Holder, A. R. Bishop, Phys. Rev. B 51, 6640 (1995).

    Article  CAS  Google Scholar 

  2. A. Bussmann-Holder, Phys. Rev. B 40, 11639 (1989).

    Article  CAS  Google Scholar 

  3. J. Leon Mustre de, I. Batistic, A. R. Bishop, and S. Trugman, Phys. Rev. Lett. 68, 3236 (1992).

    Article  Google Scholar 

  4. A. S. Alexandrov and J. Ranninger, Phys. Rev. B 45, 13109 (1992).

    Article  CAS  Google Scholar 

  5. M. I. Salkola, A. R. Bishop, J. Leon Mustre de, and S. Trugman, Phys. Rev. B 51, 8878 (1995).

    Article  CAS  Google Scholar 

  6. G. H. Jonker and J. H. Santen van, Physica 16, 337 (1950)

    Article  CAS  Google Scholar 

  7. G. H. Jonker, Physica 22, 707 (1956)

    Article  CAS  Google Scholar 

  8. G. H. Jonker and J. H. van Santen, Physica 16, 49 (1954).

    Google Scholar 

  9. H. L. Yakel Jr., Acta. Cryst. 8, 394 (1955)

    Article  CAS  Google Scholar 

  10. R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, and W. Hayse, Physica B 155, 362 (1989).

    Article  CAS  Google Scholar 

  11. R. Helmolt von, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  Google Scholar 

  12. R. von Helmolt, J. Wecker, K. Samwer, L. Haupt, and K. Barner, J. Appl. Phys. 76, 6925 (1994).

    Article  Google Scholar 

  13. C. Zener, Phys. Rev. 81, 440 (1951)

    Article  CAS  Google Scholar 

  14. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  CAS  Google Scholar 

  15. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  CAS  Google Scholar 

  16. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  Google Scholar 

  17. K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1971)

    Article  Google Scholar 

  18. H. Roeder, J. Zang and A. Bishop, Phys. Rev. Lett. 76, 1356 (1996).

    Article  Google Scholar 

  19. F. Bassani, et. al., J. Appl. Phys. 72, 2927 (1992).

    Article  CAS  Google Scholar 

  20. J. Petruzzello, J. Gaines, P. Sluis van der, D. Olego, and C. Ponzoni, Appl. Phys. Lett. 62, 1496 (1993).

    Article  CAS  Google Scholar 

  21. K. Khachaturyan, M. Kaminska, E. R. Weber, P. Becla, and R. A. Street, Phys. Rev. B 40, 6304 (1989).

    Article  CAS  Google Scholar 

  22. C. H. Park and D. J. Chadi, Appl. Phys. Lett. 66, 3167 (1995).

    Article  CAS  Google Scholar 

  23. C. H. Park and D. J. Chadi, Phys. Rev. B 52, 11884 (1995).

    Article  CAS  Google Scholar 

  24. F. Sette, S. J. Pearton, J. M. Poate, J. E. Rowe, and J. Stohr, Phys. Rev. Lett. 56, 2637 (1986).

    Article  CAS  Google Scholar 

  25. A. Erbil, W. Weber, G. S. Cargill, and R. F. Boehme Phys. Rev. B 34, 1392 (1986).

    Article  CAS  Google Scholar 

  26. J. J. Neumeier, et al., Phys Rev. B 51, 16491 (1995)

    Article  Google Scholar 

  27. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981)

    Article  CAS  Google Scholar 

  28. S. I. Zabinsky, A. Ankudinov, J. J. Rehr, and R. C. Albers, Phys. Rev. B 52, 2995 (1995).

    Article  CAS  Google Scholar 

  29. R. Castro-Rodriguez, J. L. Pefia, J. Vac. Sci. Technol. A11, 730 (1993).

    Article  Google Scholar 

  30. C. H. Park and D. J. Chadi, Phys. Rev. Lett. 75, 1134 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Mustre Leon, J., Conradson, S.D., Tyson, T. et al. X-Ray Absorption Fine Structure Applied to the Study of Systems with Lattice Instabilities. MRS Online Proceedings Library 437, 189–199 (1996). https://doi.org/10.1557/PROC-437-189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-437-189

Navigation