Skip to main content
Log in

Material Requirements for Lithium-Ion Batteries

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Lithium-ion (or ‘rocking-chair’) batteries with lithiated oxide cathodes and carbon anodes are finding increasing acceptance in many electronic applications including low rates (e.g., memory backup, real time clock, bridge function) and high rates (e.g., laptop computers, cellular phones, camcorders, etc.). This technology offers significant improvements in safety relative to cells using lithium metal anodes, with only a modest reduction in energy density. In general, materials for lithium-ion cells are chosen to minimize the energy density penalties associated with replacing the lithium electrode with an intercalation electrode. In this review paper, we describe the properties of the cathode, anode and electrolyte, and discuss requirements for improved materials for advanced lithium-ion systems. Consideration is given to energy density, rate capability, cycleability and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.P. Wilkinson, J.R. Dahn, U. von Sacken and D.T. Fouchard, Abstracts 53 and 54, p. 85 and 87, The Electrochemical Society Extended Abstracts, Vol. 90-2, Seattle, WA October 14–19 (1990).

  2. D. Fouchard and L. Lechner, Electrochimica Acta 38, 1193 (1993).

    Article  CAS  Google Scholar 

  3. J.R. Dahn et al. in Lithium Batteries - New Materials. Developments and Perspectives, p1, Edited by G. Pistoia. (Elsevier, Amsterdam 1994).

    Google Scholar 

  4. J.B. Goodenough, D.G. Wickham and W.J. Groft, J. Appl. Phys., 29, 382 (1958).

    Article  CAS  Google Scholar 

  5. T. Ohzuku, in Lithium Batteries, ed. G. Pistoia (Elsevier Science Pu., London, 1994).

    Google Scholar 

  6. M.M. Thackeray and J.B. Goodenough, U.S. Patent 4,507,371, (1985).

  7. T. Nagaura and K. Tozawa, Prog. Batt. Solar Cells, 9, 209 (1990).

    CAS  Google Scholar 

  8. E. Plitcha, S. Slane, M. Uchiyama, M. Salomon, D. Chua and W.H. Lin, J. Power Sources, 21, 25 (1987).

    Article  Google Scholar 

  9. E. Plicha, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner and W.H. Lin, J. Electrochem. Soc., 136, 1865 (1989).

    Article  Google Scholar 

  10. J.N. Reimers, J.R. Dahn, J. Electrochem. Soc. 139, 2091 (1992).

    Article  CAS  Google Scholar 

  11. W. Li, J.N. Reimers and J.R. Dahn, Solid State Ionics, 67, 123 (1993).

    Article  CAS  Google Scholar 

  12. D. Guyomard and J. M. Tarascon, “High-Voltage-Stable Electrolytes for Li1+xMn2O4/Carbon Secondary Batteries”, U.S. Patent No. 5,192,629 (1993).

  13. G. Pistoia and D. Zane, The Twelfth Int. Seminar on Primary and Secondary Battery Technology and Applications, Deerfield Beach, Florida, USA, Mar. 6–9, (1995).

  14. S. Atlung, Progr. in Batteries and Solar Cells, 2, 96 (1979).

    CAS  Google Scholar 

  15. N. Ilchev, V. Manev and K. Hampartzumian, J. Power Sources, 25, 177 (1989).

    Article  CAS  Google Scholar 

  16. A. Momchilov, V. Manev, A. Nassalevska and A. Kozawa, J. Power Sources 41, 305–314 (1993).

    Article  CAS  Google Scholar 

  17. V. Manev, A. Momchilov, A. Nassalevska and A. Kozawa, J. Power Sources, 4344, 551–559(1993).

    Article  Google Scholar 

  18. J.R. Dahn, E.W. Fuller, M. Obrovac and U. von Sacken, Solid State Ionics, 69, 265–270 (1994).

    Article  CAS  Google Scholar 

  19. L. Xie, W. Ebner, D. Fouchard, Extended Abstracts, p. 162–163, The Electrochemical Society Fall Meeting, Miami Beach, Florida, October 9–14, (1994).

    Google Scholar 

  20. K. Ozawa and M. Yokokawa, The Tenth International Seminar on Primary and Secondary Battery Technology and Applications, March 1–4, 1993, Deerfield Beach, FL.

  21. E. Cuellar, C.E. Newnham and N. Scholey, The Twelfth Int. Seminar on Primary and Second Battery Technology and Applications, Deerfield Beach, Florida, USA, Mar. 6–9, (1995).

  22. R. Fong, U. von Sacken, and J.R. Dahn, J. Electrochem. Soc., 137, 2009 (1990).

    Article  CAS  Google Scholar 

  23. J.R. Dahn, Phys. Rev. B: Condens. Matter, 44, 9170 (1991).

    Article  CAS  Google Scholar 

  24. K. Sato, M. Noguchi, A Demachi, N. Oki and M. Endo, Science, 264, 556 (1994).

    Article  CAS  Google Scholar 

  25. S. Yata, H. Kinoshita, M. Komori, N. Ando, T. Kashiwamura, T. Harada, K. Tanaka and T. Yamabe, Synthetic Metals, 62, 153 (1994).

    Article  CAS  Google Scholar 

  26. T. Zheng, Y. Liu, E.W. Fuller, S. Tsng, U. von Sacken and J. R. Dahn, submitted to J. Electrochem. Soc.

  27. D. Fouchard, L. Xie, W. Ebner, Extended Abstracts, p. 178, The Electrochemical Society Fall Meeting, Miami Beach, Florida, October 9–14, (1994).

    Google Scholar 

  28. D. Fouchard and Like Xie, unpublished results.

  29. W. Ebner, D. Fouchard and Like Xie, Solid State Ionics 69 (1994) 238–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Fouchard, D. & Megahed, S. Material Requirements for Lithium-Ion Batteries. MRS Online Proceedings Library 393, 285–304 (1995). https://doi.org/10.1557/PROC-393-285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-393-285

Navigation