Skip to main content
Log in

Technique for Measuring Electronic-Based Electro-Optic Coefficients of Ferroelectric Liquid Crystals

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Among soft organic nonlinear optical materials is a class of recently developed: χ(2)_ enhanced ferroelectric liquid crystals (FLCs). The FLC phase nonlinear susceptibility is enhanced by synthesizing onto the molecules constituting the FLC phase a moiety with an increased hyperpolarizability. The hyperpolarizability of the FLC molecules couples into the permanent, thermodynamically stable, polar order of the FLC phase resulting in a material with an enhanced nonlinear susceptibility. Like other soft organics, the linear and nonlinear optical materials characteristics can be altered by chemical synthesis and mixing.

We report on our technique to evaluate the nonlinear optical properties of χ(2)-enhanced FLCs by measuring their high-frequency electro-optic r-coefficients. The technique is broad-band, readily allowing electro-optic coefficient measurement between 100 KHz and 200 MHz. Although the experimental geometry is not conducive for practical device application, it offers a compromise between ease of fabrication and magnitude of nonlinear response. This technique can also be used to evaluate other organic materials such as poled polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.T. Lagarwall and I. Dahl, “Ferroelectric Liquid Crystals,” Mol. Cryst. Liq. Cryst. 114, 151 (1984); N. A. Clark and S.T. Lagarwall, “Surface-stabilized ferroelectric liquid crystal electro-optics: new multistate structures and devices,” Ferroelectrics 59, 25 (1984).

    Google Scholar 

  2. P.N. Prasad and D.J. Williams, Intro, to Nonlinear Optical Effects in Molecules and Polymers, (John Wiley and Sons, N.Y., 1991).

    Google Scholar 

  3. D.M. Walba, M.B. Ros, N.A. Clark, R. Shao, K.M. Johnson, M.G. Robinson, J.Y. Liu, and D. Dorowski, Mol. Cryst. Liq. Cryst. 198, 51 (1991).

    Article  CAS  Google Scholar 

  4. D.S. Chemla and J.Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, N.Y. 1987, vol 1).

  5. A. N. Vtyurin, V.P. Yermakov, B.I. Osrovsky and V.F. Shavanov, Krystallografiya 26, 546 (1981).

    CAS  Google Scholar 

  6. A. Taguchi, Y. Ouchi, H. Takezoe, and A. Fukuda, Jap. J. App. Phys. 28, L997 (1989); J.Y. Liu, M.G. Robinson, K.M. Johnson, and D. Dorowski, Opt. Lett 15, 267 (1990).

    Article  Google Scholar 

  7. D.M. Walba, M.B. Ros, T. Sierra, J.A. Rego, N.A Clark, R. Shao, M.D. Wand, R.T. Vohra, K. Arnett, and S. Velsko, Ferroelectrics 121, 247 (1991).

    Article  CAS  Google Scholar 

  8. K. Arnett, S. Velsko, and D. Walba, Appl. Phys. Lett. 64, 2919 (1994).

    Article  CAS  Google Scholar 

  9. K. Schmitt, C. Benecke, M.Schadt, J. Funfschilling, R.P. Herr, R. Buchecker, J. Phys. III (Fr) 4, 387 (1994).

    CAS  Google Scholar 

  10. D. Walba, D. Dyer, P. Cobben, T. Sierra, J. Rego, C. Liberko, R. Shao, and N. Clark, in this volume.

  11. Micro-g Solutions, 5558 Harlan St., Arvada, Colorado, 80002 (303)-422-8744.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnett, K.E., Walba, D.M. & Drewes, J.A. Technique for Measuring Electronic-Based Electro-Optic Coefficients of Ferroelectric Liquid Crystals. MRS Online Proceedings Library 392, 135–146 (1995). https://doi.org/10.1557/PROC-392-135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-392-135

Navigation