Skip to main content
Log in

Construction of Strained SrTiO3/BaTiO3 Superlattices and Their Dielectric Properties

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Artificial dielectric superlattices of SrTiO3/BaTiO3(STO/BTO) and CaTiO3/BaTiO3 (CTO/BTO) have been formed by a pulsed laser ablation technique with an in situ monitoring of RHEED (reflection high energy electron diffraction) oscillation. The crystal structures can be controlled with atomic order accuracy and a large stress of 400–500 MPa is introduced at the interface between the BTO and STO layers. The superlattices show higher dielectric constant than that of (Sr0.5Ba0.5)TiO3 films against the change of temperature or applied frequency. A large dielectric constant of 900 was observed for the superlattices with a stacking periodicity of 2 unit cells / 2 unit cells. The superlattices show drastically different electrical behavior from that of the solid solution (Sr,Ba)TiO3 films, both with changing temperature and applied frequency. Broad maxima of the dielectric constants occur around 40–50 °C and the values remain large even for the temperature above 200 °C. On the contrary, in the case of CTO/BTO superlattices, lattice constants and dielectric constant do not change so much compared with STO/BTO cases. Lattice mismatch in the STO/BTO and the CTO/BTO superlattices are 2.5% and 5.5%, respectively. In the case of CTO/BTO, misfit dislocations such as stacking faults may occur at the interface between CTO and BTO layers owing to large lattice mismatch.Therefore, lattice strain is introduced effectively below the lattice mismatch of about 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.Y. Chern, A. Gupta, B.W. Hussey and T.M. Shaw, J. Vac. Sci. Technol. 11, 637 (1993).

    Article  CAS  Google Scholar 

  2. R.A. McKee, F.J. Walker, J.R. Conner, E.D. Specht and D.E. Zelmon, Appl. Phys. Lett. 59, 782 (1991).

    Article  CAS  Google Scholar 

  3. H. Tabata, O. Murata, T. Kawai, S. Kawai and M. Okuyama, Appl.Phys.Lett. 64, 428 (1994).

    Article  CAS  Google Scholar 

  4. Y. Shibata, K. Kaya, K. Akashi, M. Kanai, T. Kawai and S. Kawai, Appl. Phys.Lett., 61, 1000 (1992).

    Article  CAS  Google Scholar 

  5. Cohen R.E., Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  6. E.N. Bunting, G.R. Shelton and A.S. Creamer, J.Am.Ceram.Soc. 30, 114 (1947).

    Article  CAS  Google Scholar 

  7. R. Amirez, M.F. Lapena and J.A. Gonzalo, Phys.Rev. B42 2604 (1990).

    Google Scholar 

  8. D.L. Decker, and Y.X. Zhao, Phys.Rev. B39 2432 (1989).

    Article  Google Scholar 

  9. S. Marais, V. Heine, C. Nex and E. Salje, Phys.Rev.Lett. 66, 2480 (1991).

    Article  CAS  Google Scholar 

  10. H. Tabata, H. Tanaka and T. Kawai, Appl.Phys.Lett. 65, 1970 (1994).

    Article  CAS  Google Scholar 

  11. Landolt-Bornstein Vol.16 Edt. T.Mitsui and S.Nomura (Springer-Verlag, New York 1981), p.66.

  12. J.W. Matthews and A.E. Blakeskee; J.Crys.Growth 27, 118 (1974).

    CAS  Google Scholar 

  13. J.S. Speck, A. Seifert, W. Pompe and R. Ramesh; J.Appl.Phys. 76, 477 (1994).

    Article  CAS  Google Scholar 

  14. H. Tabata, H. Tanaka, T. Kawai and M. Okuyama, Jpn.J.Appl.Phys. 33, No.12 (1994) in press.

  15. V. P. Dudkeivich, Sov.Phys.Solid State, 23 347 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabata, H., Tanaka, H. & Kawai, T. Construction of Strained SrTiO3/BaTiO3 Superlattices and Their Dielectric Properties. MRS Online Proceedings Library 361, 453–464 (1994). https://doi.org/10.1557/PROC-361-453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-361-453

Navigation