Skip to main content
Log in

Cleaning during Initial Stages of Epitaxial Growth in an Ultra-high Vacuum Rapid Thermal Chemical Vapor Deposition Reactor

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper, we report our results on surface preparation for the growth of epitaxial Si films. Hydrogen passivated surfaces are currently being investigated for application in Si epitaxy to eliminate the high temperature in-situ bake necessary to remove the native oxide. Hydrogen passivation is obtained by a dilute HF dip before the substrate is loaded in the process chamber. However the passivation is partially lost when the HF dip is followed by a water rinse which results in oxygen absorption on the substrate. It was found that the peak oxygen concentration at the epitaxy substrate interface increase by an order of magnitude due to a five minute water rinse. We report here that oxygen and carbon at the epitaxy substrate interface can be desorbed during initial stage of epitaxial growth by reducing epitaxial growth rate. In this work, epitaxial Si films were deposited over a wide range of growth rates obtained by varying Si2H6 flow rates. The peak oxygen concentration decreases by an order of magnitude by changing the growth rate from 3000 to 700Å/kminute for a deposition temperature of 800°C. We believe that at higher growth rates Si overgrows on absorbed oxygen maintaining epitaxial alignment reflected in the good electrical quality of the epitaxial films. However, at low growth rates oxygen has sufficient time to desorb before overgrowth can take place, improving the epitaxy substrate interface quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Murota, N. Nakamura, M. Kato, N. Mikoshiba and T. Ohmi, Appl. Phys. Lett. 54, 1007 (1989).

    Article  CAS  Google Scholar 

  2. T. O. Sedgwick, M. Berkenblit and T.S. Kuan, Appl. Phys. Lett. 54, 2689 (1989).

    Article  CAS  Google Scholar 

  3. B. S. Meyerson, F. J. Himpsel and K. J. Uram, Appl. Phys. Lett. 57, 1034 (1990).

    Article  CAS  Google Scholar 

  4. M. L. Green, D. Brasen, H. Luftman and V. C. Kannan, Appl. Phys. Lett. 65, 2558 (1989).

    CAS  Google Scholar 

  5. M. K. Sanganeria, K. E. Violette and M. C. Öztürk, Appl. Phys. Lett. 63, 1225 (1993).

    Article  CAS  Google Scholar 

  6. I. Rahat, J. Shappir, D. Fraser, J. Wei, J. Borland and I. Beinglass, J. Electrochem. Soc. 138, 2370 (1991).

    Article  CAS  Google Scholar 

  7. W. R. Burger and R. Reif, J. Appl. Phys. 62, 4255 (1987).

    Article  CAS  Google Scholar 

  8. A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).

    Article  CAS  Google Scholar 

  9. T. Hsu, B. Anthony, R. Qian, J. Irby, S. Banerjee, A. Tasch, S. Lin, H. Marcus and C. Magee, J. Elect. Mats. 20, 279 (1990).

    Article  Google Scholar 

  10. Y. Kunii and Y. Sakakibara, Jap. J. Appl. Phys. 26, 1816 (1987).

    Article  CAS  Google Scholar 

  11. H. Hirayama, T. Tatsumi, A. Ogura and N. Aizaki, Appl. Phys. Lett. 51, 2213 (1987).

    Article  CAS  Google Scholar 

  12. M. M. Moslehi Proceedings of the SPIE symposium on Rapid Thermal and Related Processing Techniques, (SPIE, 1990), Vol. 1393, p. 90.

    Article  Google Scholar 

  13. S. Wright and H. Kroemer, Appl. Phys. Lett. 36, 210 (1980).

    Article  CAS  Google Scholar 

  14. T. Tatsumi, N. Aizaki and H. Tsuya, Jap. J. Appl. Phys. 24, L227 (1985).

    Article  Google Scholar 

  15. J. F. Morar et al., Appl. Phys. Lett. 50, 463 (1987).

    Article  CAS  Google Scholar 

  16. S. S. Iyer, M. Arienzo and E. Fresart, Appl. Phys. Lett. 57, 893 (1990).

    Article  CAS  Google Scholar 

  17. D. Gräf, M. Grunder and R. Schulz, J. Vac. Sci. Technol. A 7, 808 (1989).

    Article  Google Scholar 

  18. J. C. Sturm, C. M. Gronet and J. F. Gibbons, J. Appl. Phys. 59, 4180 (1986).

    Article  CAS  Google Scholar 

  19. T. Y. Hsieh, K. H. Jung, D. L. Kwong and S. K. Lee, J. Electrochem. Soc. 138, 1188 (1991).

    Article  CAS  Google Scholar 

  20. D. T. Grider Ph. D. Thesis North Carolina State University, (1993).

    Google Scholar 

  21. M. K. Sanganeria, K. E. Violette and M. C. Oztürk, Proceedings of the MRS Symposium on Rapid Thermal and Integrated Processing, (Materials Research Society, 1993), Vol. 303, p. 25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanganeria, M.K., Violette, K.E., Öztürk, M.C. et al. Cleaning during Initial Stages of Epitaxial Growth in an Ultra-high Vacuum Rapid Thermal Chemical Vapor Deposition Reactor. MRS Online Proceedings Library 334, 463–468 (1993). https://doi.org/10.1557/PROC-334-463

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-334-463

Navigation