Skip to main content
Log in

Defect Relaxation Dynamics in Amorphous Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Using transient capacitance and transient spin techniques, we have the determined the manner in which the mobility gap energy of the D defect is altered following a change in its charge state. This relaxation process gives rise to a power law rather an exponential thermal release of defect electrons with time and also causes the charge emission and spin transients to obey a scaling law. We also deduce that the D°/D+ transition rate depends on the tenure of the proceeding D/D° transition. This last aspect of the D defect emission behavior implies that it must be treated as a non-Markovian process. Such relaxation dynamics have profound consequences for the steady state distribution of D defect energies. Using the relaxation parameters determined by the transient measurements we have been able to solve a set of coupled differential equations under steady-state conditions to provide the energy distributions of both the D° and D defect sub-bands. The results of these calculations agree remarkably well with the experimental distributions determined by modulated photocurrent and steady-state capacitance measurements. This implies that the statistical variations in the occupation history of the defect may be the dominant factor determining both distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Lang, J. D. Cohen, and J. P. Harbison, Phys. Rev. B25 5285 (1982).

    Article  Google Scholar 

  2. N. M. Amer and W. Jackson, in Semiconductors and Semimetals, ed. by J. Pankove (Academic, New York, 1984), Vol. 21B, p. 83.

    Article  Google Scholar 

  3. See, e.g., P.G. LeComber and W.E. Spear, Philos. Mag. Lett. 53, L1 (1986).

    Google Scholar 

  4. Y. Bar-Yam and J.D. Joannopoulos, Phys. Rev. Lett. 56, 2203 (1986).

    Article  CAS  Google Scholar 

  5. S. C. Deane and M. J. Powell, Phys. Rev. Lett. 70, 1654 (1993).

    Article  CAS  Google Scholar 

  6. H. M. Branz, Phys. Rev. B39 5107 (1989).

    Article  Google Scholar 

  7. T. M. Leen, and J. D. Cohen, J. Non-Cryst. Solids 137&138, 319 (1991).

    Article  Google Scholar 

  8. J. D. Cohen, T. M. Leen, and R. J. Rasmussen, Phys. Rev. Lett. 69, 3358 (1992).

    Article  CAS  Google Scholar 

  9. We exposed samples to 1.9 eV light at 400 mW/cm2 at 300K for ≥ 20 hours.

  10. T. M. Leen, J. D. Cohen, and A. V. Gelatos, Mat. Res. Soc. Symp. Proc. 192, 707 (1990).

    Article  CAS  Google Scholar 

  11. H. Okushi, N. Orita, K. Arai, and K. Tanaka, J. Non-Cryst. Solids 137&138, 175 (1991).

    Article  Google Scholar 

  12. R. J. Rasmussen, J. D. Cohen, and J. M. Essick, Mat. Res. Soc. Symp. Proc. 219, 569 (1991).

    Article  CAS  Google Scholar 

  13. H. Oheda, J. Appl. Phys. 52, 6693 (1981).

    Article  CAS  Google Scholar 

  14. G. Schumm and G.H. Bauer, Phys. Rev. B39, 5311 (1989)

    Article  Google Scholar 

  15. F. Zhong and J.D. Cohen, Mat. Res. Soc. Symp. Proc. 258, 813 (1992).

    Article  CAS  Google Scholar 

  16. The MPC derived DOS reflect bulk film properties since this is where the photocarriers spend most of their time and thus will most likely suffer phase shifts due to deep trapping.

  17. C. E. Micheleson, A.V. Gelatos, and J.D. Cohen, Appl.Phys Lett. 47, 412 (1985)

    Article  Google Scholar 

  18. K. K. Mahavadi, K. Zellama, and J. D. Cohen, Phys. Rev. B35, 7776 (1987).

    Article  Google Scholar 

  19. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).

    Article  Google Scholar 

  20. K. Hattori, Y. Niwano, H. Okamoto and Y. Hamakawa, J. Non-Cryst. Solids, 137&138, 363 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Roger Haydock for many useful discussions and suggestions. This work was supported by NSF Grants DMR-8903383 and DMR-9208334.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, J.D., Leen, T.M., Zhong, F. et al. Defect Relaxation Dynamics in Amorphous Silicon. MRS Online Proceedings Library 297, 183–194 (1993). https://doi.org/10.1557/PROC-297-183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-297-183

Navigation