Skip to main content
Log in

Copper CVD Reactions of Cu(I)(hfae)(vtms) Adsorbed on TiN

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have studied the thermal decomposition of a Cu MOCVD precursor, hexafluoroacetylacetonate copper vinyl trim ethylsilane (CuI (hfac)(vtms)), on both air-oxidized and N2 ion beam sputter-annealed single crystal (100) and polycrystalline TiN surfaces. Dosing TiN with CuI(hfac)(vtms) at 25°C results in chemisorption of CuI(hfac) and desorption of vtms. On oxidized surfaces, litle or no decomposition of CF3 groups is detected at room temperature, while on sputter-annealed polycrystalline and single crystal surfaces, a small amount of decomposition is indicated by a CF2 feature in the C(1s) X-ray photoelectron spectroscopy (XPS) spectrum, and a low-binding energy fluoride in the F(1s) spectrum. Between 100 and 250°C, CuI(hfac) decomposes to evolve gaseous products and leaves Cu, F, and C on the surface. Further heating leads to diffusion of Cu into the TiN, apparently enhanced by simultaneous diffusion of F. Decomposition of the hfac CF3 groups at elevated temperature is independent of the nature of the TiN surface (i.e. polycrystalline vs. (100), or clean vs. oxidized). However, Cu diffusion depends strongly on the surface preparation. The onset of Cu diffusion into oxidized polycrystalline, clean polycrystalline, and clean single crystal (100) TiN occurs at 250, 320, and 430°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Arita, N. Awaya, K. Ohno and M. Sato, Proc. IEEE Intl. Electron. Dev. Mater. Conf. p. 39, (San Francisco 1990).

    Google Scholar 

  2. D.S. Gardener, J. Onuki, K. Kudoo, and Y. Misawa, Proc. 8th Intl. IEEE VMLSI Multilevel Intercon. Conf., p. 99 (1991).

    Google Scholar 

  3. R.J. Miller and A. Gangulee, Thin Solid Films, 69, 379 (1980).

    Article  CAS  Google Scholar 

  4. J.S.H. Cho, H.-K. Kang, M.A. Beiley, S.S. Wong, and C.H. Ting, Symp. IEEE Electron Device Lett., 433 (1992).

    Google Scholar 

  5. J.C.C. Tsai in VLSI Technology, ed. S. Sze (McGraw-Hill, NY 1988), pp. 307-8.

  6. J.O. Olowafe, J. Li, and J.W. Mayer, J. Appl. Phys. 68, 6207 (1990).

    Article  Google Scholar 

  7. J.O. Olowafe, J. Li, J.W. Mayer, and E.G. Colgan, Appl. Phys. Lett. 58, 469 (1991).

    Article  Google Scholar 

  8. S.-Q. Wang, I. Raaijmakers, B.J. Burrow, S. Sumar, S. Redkar, and K.-B. Kim, J. Appl. Phys. 68, 5176 (1990).

    Article  CAS  Google Scholar 

  9. J.A.T. Norman, Proc. Schumacher 3rd Dielectrics and CVD Metal. Symp., pp. 195–220 San Diego, 1991)

    Google Scholar 

  10. J.A.T. Norman, B.A. Muratore, P.N. Dyer, D.A. Roberts, and A.K. Hochberg, J. Phys. IV 1, C2/271 (1991).

    CAS  Google Scholar 

  11. A. Jain, K.-M. Chi, T.T. Kodas, M.J. Hampden-Smidi, J.D. Farr, and M.F. Paftett. Chem Mater. 3, 995 (1991).

    Article  CAS  Google Scholar 

  12. S.K. Reynolds, C.J. Smart, E.F. Baran, T.H. Baum, C.E. Larson, and P.J. Brock, Appl. Phys. Lett. 59, 2332 (1991).

    Article  CAS  Google Scholar 

  13. A. Jain, K.-M. Chi, M.J. Hampden-Smith, T.T. Kodas, J.D. Farr, and M.F. Paffett, J. Mater. Res. 7, 261 (1992).

    Article  CAS  Google Scholar 

  14. V.M. Donnelly and M.E. Gross, J. Vac. Sci. Technol. 1, in press

  15. J. A. McCaulley, V. R. McCrary, and V. M. Donnelly, J. Phys. Chem. 93, 1014 (1989).

    Article  CAS  Google Scholar 

  16. J. A. McCaulley, and V. M. Donnelly, J. Chem. Phys. 91, 4330 (1989).

    Article  CAS  Google Scholar 

  17. V. M. Donnelly and J. A. McCaulley, Surf. Sci., 238, 34 (1990).

    Article  CAS  Google Scholar 

  18. V. M. Donnelly and J. A. McCaulley, Surf. Sci. Lett., 235, L333 (1990).

    Article  CAS  Google Scholar 

  19. V. M. Donnelly and J. A. McCaulley, J. Vac. Sci. Technol., in press (1991).

    Google Scholar 

  20. L. Hultman, S.A. Barnett, J.-E. Sundgren, and J.E. Greene, J. Crystal Growth 92, 639 (1988).

    Article  CAS  Google Scholar 

  21. In these measurements of atomic concentration, the signals were corrected for inelastic scattering.

  22. In these measurements of relative coverages of adsorbates, no attenuation of signals due to inelastic scattering was assumed.

  23. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by D. Briggs and M.P. Seah, (John Wiley & Sons, NY 1983).

    Google Scholar 

  24. Handbook of X-ray Photoelectron spectroscopy, edited by G.E. Muilenburg, (Perkin-Elmer Corporation, Eden Prarie, MN, 1979).

    Google Scholar 

Download references

Acknowledgments

We thank K. P. Cheung for polycrystalline TiN samples.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guinn, K.V., Donnelly, V.M., Gross, M.E. et al. Copper CVD Reactions of Cu(I)(hfae)(vtms) Adsorbed on TiN. MRS Online Proceedings Library 282, 379–385 (1992). https://doi.org/10.1557/PROC-282-379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-282-379

Navigation