Skip to main content
Log in

Zeolitic Materials as Organizing Media for Semiconductor-Based Artificial Photosynthetic Systems

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Two photocatalytic systems consisting of spatially organized electron donor/photosensitizer/oxide semiconductor/catalyst assemblies are described. The first consists of an aluminosilicate zeolite (mordenite or zeolite L) containing Pt clusters, methylviologen, and titanium oxide within the linear channels, together with a sizes-excluded photosensitizer RuL32+ (L = 4.4–dicarboxy–2,2–bipyridine) adsorbed at the TiO2 surface. The kinetics of photochemical charge separation and hydrogen evolution in the presence of sacrificial electron donors are reported. In the second system, a layered oxide semiconductor, K4−xHxNb6O17⋅nH2O, replaces the zeolite/TiO2/MV2+ composite. Using adsorbed RuL3 and visible light excitation, this material decomposes acidic iodide solutions into H2 and I3 with a quantum efficiency of 0.3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda,Nature (London) 238,37 (1972)

    CAS  Google Scholar 

  2. For reviews see M. Grätzel, Ed., Energy Resources through Photochemistry and Catalysis (Academic Press, New York, 1983); A. Heller, Acc.Chem.Res. 14,154(1981); M.S. Wrighton, ibid., 12,303 (1979);A.J.Bard, Science, 207, 139(1980); J.R.Norris, D. Meisel, Eds., Photochemical. Energy Conversion (Elsevier Science Publishing, New York, 1989).

    Google Scholar 

  3. B.J. Tufts, I.L. Abrahams, P.G. Santangelo, G.N. Ryba, L.G. Casagrande, N.S. Lewis, Nature, 326, 861 (1987); I.L. Abrahams, P.G. Santangelo, G.N. Ryba, B.J. Tufts, N.S. Lewis, New J. Chem.ll,157 (1987).

    Article  CAS  Google Scholar 

  4. P. Liska, N. Vlachapoulos, M.K. Nazeeruddin, P. Comte, M. Grätzel, J. Am.Chem.Soc. 110, 3686 (1988) and references therein; M.T.Spitler, M.Calvin, J.Chem.Phys.66,4294(1977).

    Article  CAS  Google Scholar 

  5. V.S. Komarov, L.P. Shirinskaya, N.P. Bokhan, Russ. J. Phys. Chem. 50, 1478 (1976).

    Google Scholar 

  6. G. Bergeret, P. Gallezot, B. Imelik, J.Phys.Chem. 85, 411 (1981); P. Gallezot, Catal.Rev.Sci.Eng.20,121(1979); N.C. Saha, E.E.Wolf, Appl.Catal.13,107(1984); M. Boudart, G. Meitzner, Springer Proc. Phys.2,217(1984); T.R.Felthouse, J.A.Murphy, J.Catal.98,411(1986).

    Article  CAS  Google Scholar 

  7. L. Persaud, A.J. Bard, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, and J.M. White, Inorg. Chem. 26, 3825 (1987).

    Article  CAS  Google Scholar 

  8. L.E. Brus, J.Chem. Phys. 80, 4403 (1984); Nouveau J.Chem.11,123 (1987).

    Article  CAS  Google Scholar 

  9. H. Yahia, Phys.Rev. 130, 1711 (1963); R.G.Breckenridge, W.R. Hosler Phys.Rev.91,793(1953); F.A.Grant, Rev.Mod.Phys.31,646(1953).

    Article  CAS  Google Scholar 

  10. N.M. Dimitrijevic, D. Savic, O.I. Micic, A.J. Nozik, J.Chem.Phys. 88, 4278 (1984); D.Duonghong, J.Ramsden, M.Gratzel, J.Am.Chem.Soc. 104, 2977 (1982); A.Henglein, Ber.Buns.Phys.Chem.80, 241(1982).

    Article  CAS  Google Scholar 

  11. M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis, E. Giamello, J.Phys. Chem. 89, 5017 (1985).

    Article  CAS  Google Scholar 

  12. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya, T. Onishi, J. Chem.Soc.Chem. Comm. 356 (1986); 1706(1986); A. Kudo, A. Tanaka, D. Domen, K. Maruya, K. Aika, T. Onishi, J.Catal., 111 67(1988); A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya, T. Onishi,ibid.,120, 337 (1989); K. Sayama, A. Tanaka, K. Domen, K. Maruya, T. Onishi, J.Phys.Chem.. 95, 1345 (1991).

    Google Scholar 

  13. M. Gasperin, M.-T. LeBihan, J.Solid State Chem. 33, 83 (1980); 43., 346(1982).

    Article  CAS  Google Scholar 

  14. B. Raveau, Rev.Chim.Miner. 21, 391 (1984).

    CAS  Google Scholar 

  15. D. Fitzmaurice, H. Frei, presented at the 14th DOE Solar Photochemistry Research Conference, Lake Harmony, PA, 1990.

    Google Scholar 

Download references

Acknowledgement

We thank Drs. Anthony Harriman and Bruce Parkinson for helpful discussions. This work was supported by the Division of Energy, under contract DE-FG05-87ER13789. Flash photolysis experiments were carried out at the Center for Fast Kinetics Research, University of Texas at Austin. CFKR is supported jointly by the Biomedical Research Technology Program of the Division of Research Resources of NIH (RR00886) and by the University of Texas at Austin. T.E.M. thanks the Camille and Henry Dreyfus Foundation for support in the form of a Teacher-Scholar Award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il Kim, Y., Riley, R.L., Huq, M.J. et al. Zeolitic Materials as Organizing Media for Semiconductor-Based Artificial Photosynthetic Systems. MRS Online Proceedings Library 233, 145–156 (1991). https://doi.org/10.1557/PROC-233-145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-233-145

Navigation