Skip to main content
Log in

PECVD RF Discharge Models Review

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This paper presents a concise and subjective summary of the rapid progress that has been made in the understanding of the essential features of RF discharges. The paper concentrates on introducing the important concepts used in modeling the rf discharge. The discharges have been modeled from several distinctly different approaches. These include circuit, beam-diffusion, plasma fluid or continuum, and particle kinetic models. The treatments have their usefulness depending on the application. The circuit models give easily parameterized results, power deposition, and phase angles between voltage and current, however, they do not describe the important plasma chemistry and the source terms for deposition and etching. The newer continuum models efficiently give self-consistent plasma parameters for higher pressure discharges but synergistic ion and neutral interactions with surfaces are difficult to include. The particle kinetic models can include many effects without approximations, however they need extensive data sets and long computer run times. The coupling of improved diagnostics and the different theories has resulted in a convergence of their conclusions. There are four distinct energy-gain mechanisms in the RF discharge: a bulk plasma excitation; electron beam excitation resulting from secondary emission from ion collisions with the electrodes; wave-riding acceleration on the sheath oscillation (collisional: Kushner); and a non-collisional plasma electron-sheath boundary interaction (Godyak). The relative contributions are sensitive functions of the gas mixture, pressure, frequency and RF voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Godyak, “Soviet RF Discharge Research”. Delphic Associates, Inc., Falls Church, VA. (1986)

    Google Scholar 

  2. L.D. Landau, Soy. Phys. JETP 10, 25 (1946)

    Google Scholar 

  3. M. A. Lieberman, IEEE Trans. Plasma Science, 17, 338 (1989)

    Article  Google Scholar 

  4. P. Bletzinger, accepted for publication: J. Appl. Phys. (1990).

  5. J. S. Townsend and E. W. B. Gill, Phil. Mag., 26, 290 (1938)

    Article  CAS  Google Scholar 

  6. H. Margenau, Phys. Rev., 69, 508 (1946)

    Article  CAS  Google Scholar 

  7. S. C. Brown, in Handbuch der Physik, 22, Springer-Verlag Heidelberg (1956)

  8. W. L. Harries and A. Von Engel, Proc. Roy. Soc., A222, 490 (1954)

    Google Scholar 

  9. R. Winkler, M. Capitelli, M. Dilonardo, C. Gorse and J. Wilhelm, Plasma Chem. Plasma Proc., 6, 437 (1986)

    Article  CAS  Google Scholar 

  10. L. Tonks and I. Langmuir, Phys. Rev., 34, 876 (1929)

    Article  CAS  Google Scholar 

  11. T.J. Sommerer, W.N.G. Hitchon and J.E. Lawler, Phys Rev 39A, 6356, (1989) and refs therein.

    Article  Google Scholar 

  12. J. M. Keller and W. B. Pennebaker, IBM J. Res Develop., 23, 3 (1979)

    Article  Google Scholar 

  13. W. H. Long, Jr., Northrop Research and Technology Center, Technical Report AFAPL-79-2038 (1979)

    Google Scholar 

  14. J-P Boeuf and P. Belenguer, to appear in Non Equilibrium Processes in Partially Ionized Plasmas, NATO-ASI, Eds M. Capitelli amd J.N. Bardsley, (1989).

  15. D. B. Graves and K. F. Jensen, IEEE Trans Plasma Sci., PS-14, 78 (1986).

    Article  CAS  Google Scholar 

  16. J-P Boeuf, Phys. Rev., A36, 2782 (1987).

    Article  Google Scholar 

  17. A. D. Richards, B. E. Thompson and H. H. Sawin, Appl. Phys. Lett 50, 492 (1988).

    Article  Google Scholar 

  18. M. S. Barnes, T. J. Coffee, and M. E. Elta, J. Appl. Phys., 61, 81, (1987).

    Article  CAS  Google Scholar 

  19. P. Segur, M. Yousfi, J. P. Boeuf, E. Marode, A. J. Davies and J. G. Evans in NATO-ASI 89A, 331 (1983).

    Google Scholar 

  20. E. Gogolides, J-P Nicolai, and H. H. Sawin, J. Voac Sci. Tech. A7, 1001 (1989).

    Article  Google Scholar 

  21. M. Surenda, D.B. Graves, and I. J. Morey, submitted to J. Appl. Phys (1989).

    Google Scholar 

  22. M. J. Kushner, IEEE Trans. Plasma Sci., PS-14, 188 (1986).

    Article  CAS  Google Scholar 

  23. P. M. Vallinga, PhD Thesis, Technical University of Eindoven, (1988).

    Google Scholar 

  24. D. W. Ernie and H. J. Oskam, Studies of the Volume and Plasma Sheath Properties of Radio Frequency Discharges, AFWALTR-2103, (1988).

    Google Scholar 

  25. P. Armentrout, Unpublished results (1989).

  26. I. Haller, J. Vac. Sci. Technol., A1, 1376 (1983).

    Article  Google Scholar 

  27. J. Liu, G. L. Huppert and H. H. Sawin, presented at the 41st Gaseous Electronics Conference, Minneapolis, MN (1988).

    Google Scholar 

Download references

Acknowledgement

It is a pleasure to recognize the preprints and information of Drs. Armentrout, Bletzinger, Boeuf, Kushner, Sawin, Sommerer, Surenda, and Vallinga.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garscadden, A. PECVD RF Discharge Models Review. MRS Online Proceedings Library 165, 3–15 (1989). https://doi.org/10.1557/PROC-165-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-165-3

Navigation