Skip to main content
Log in

Ion Implantation-Induced Amortization of Ceramic Oxides

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A mechanism of amorphization by ion implantation in ceramic oxides is studied using a rate theory approach. It is proposed that the production of highly localized lattice distortions causes lattice destabilization and the ensuing transition to the amorphous state. These distortions can be caused by a large point defect buildup. It is argued that point defect retention occurs because of the impossibility of producing antisite defects. It is proposed that point defects on each sublattice can shield or trap point defects on the other sublattice. Similarly, metallic impurities may shield oxygen vacancies or trap oxygen interstitial ions, preventing anion Frenkel pairs from recombining. These effects are modeled in a-alumina for low temperature implantations (e.g., around 78 K), where point defects are immobile. It is shown that, at these temperatures, recombination is strongly hindered by the radiation-induced point defects themselves, rather than by the implanted impurities. The high point defect concentration attained by this mechanism is sufficient to raise the free energy of the crystal above the free energy of the amorphous solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.W. Clinard and L.W. Hobbs, in Physics of Radiation Effects in Crystals, edited by R.A. Johnson and A.N. Orlov (North Holland, 1986) p. 387.

  2. G.P. Pells and A.Y. Stathopoulos, Rad. Eff. 74, 181 (1983)

    Article  CAS  Google Scholar 

  3. A.V. Drigo, S. Lo Russo, P. Mazzoldi, P. Goode, and N. Hartley, Rad. Eff. 33, 161 (1977)

    Article  CAS  Google Scholar 

  4. C.J. McHargue, G.C. Farlow, G.M. Begun, J.M. Williams, C.W. White, B.R. Appleton, P.S. Sklad, and P. Angelini, Nucl. Inst, and Meth. B16, 212 (1986)

    Article  CAS  Google Scholar 

  5. L.C. Feldman, J.W. Mayer, and S.T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982)

  6. C.W. White, C.J. McHargue, P.S. Sklad, L.A. Boatner, and G.C. Farlow, Materials Science Reports, 4, 41 (1989)

    Article  CAS  Google Scholar 

  7. C.J. McHargue, P.S. Sklad, J.C. McCallum, C.W. White, A. Perez, E. Abonneau, and G. Marest, to appear in Nucl. Instr. and Meth.B (1990)

  8. P.J. Burnett and T.F. Page, J. Mater. Sci 19, 3524 (1984)

    Article  CAS  Google Scholar 

  9. P. Angelini, P.S. Sklad, C.J. McHargue, M.B. Lewis, and G.C. Farlow,

    Google Scholar 

  10. C.W. White, G.C. Farlow, C.J. McHargue, P.S. Sklad, P. Angelini, and B.R. Appleton, Nucl. Inst, and Meth. B7/8, 473 (1985)

    Article  Google Scholar 

  11. C.J. McHargue, G.C. Farlow, P.S. Sklad, C.W. White, A. Perez, N. Kornilios, and G. Marest, Nucl. Inst, and Meth. B19/20, 813 (1987)

    Article  Google Scholar 

  12. C. McHargue, The structure of ion implanted ceramics, to appear in Nucl. Instr. and Meth.B (1990)

  13. D.F. Pedraza, Metall. Trans. A, (in press), 1990

  14. F.F. Morehead, Jr., and B.L. Crowder, Rad. Eff. 6, 27 (1970)

    Article  Google Scholar 

  15. Y. Chen, M.M. Abraham and D.F. Pedraza, to be published.

  16. J.H. Crawford, Jr., J. Nucl Mater. 108/109, 644 (1982)

    Article  Google Scholar 

  17. F. Agullo-Lopez, C.R.A. Catlow, and P.D. Townsend, Point Defects in Materials, (Academic Press, New York, 1988)

  18. M.D. Rechtin, Rad. Eff. 42, 129 (1979)

    Article  CAS  Google Scholar 

  19. C. Donnet, H. Jaffrezic, N. Moncoffre, J. Tousset, and G. Fuchs, to appear in Nucl. Instr. and Meth.B (1990)

  20. J.H. Harding, Cryst. Latt. Def. and Amorph. Mat. 18, 247 (1989)

    Google Scholar 

  21. N. Ishizawa, T. Miyata, I. Minato, F. Marumo, and S. Iwai, Acta Cryst. B36, 228 (1980)

    Article  CAS  Google Scholar 

  22. R.T. Cox, Phys. Lett 21, 503 (1966)

    Article  CAS  Google Scholar 

  23. S.K. Mohaptra and F.A. Kroger, J. Am. Ceram. Soc., 60, 381 (1977)

    Article  Google Scholar 

  24. K. Atobe and M. Nakagawa, Cryst. Latt. Def. and Amorph. Mat. 17, 229 (1987)

    CAS  Google Scholar 

  25. S.J. Zinkle, in Structure-Property Relationships in Surface-Modified Ceramics, edited by C. J. McHargue, R. Kossowsky, and W.O. Hofer (NATO ASI Series, vol. 170, 1989), p. 219

  26. D.F. Pedraza, to be published

  27. G.J. Dienes, D.). Welch, C.R. Fischer, R.D. Hatcher, O. Lazareth, and M. Samberg, Phys. Rev. B11, 3060 (1975)

    Article  Google Scholar 

  28. C.R.A. Catlow, R. James, W.C. Mackrodt, and R.F. Stewart, Phys. Rev. B25, 1006 (1982)

    Article  Google Scholar 

  29. D.F. Pedraza, J. Mater. Res. 1, 425 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, D.F. Ion Implantation-Induced Amortization of Ceramic Oxides. MRS Online Proceedings Library 157, 561–567 (1989). https://doi.org/10.1557/PROC-157-561

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-157-561

Navigation