Skip to main content
Log in

Effect of Tensile Deformation on the Grain Size of Annealed Grain Non-Oriented Electrical Steel

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

An experimental study on the effect of tensile deformation on recrystallized grain size has been carried out in order to establishing the optimal deformation needed to accelerate grain growth during final annealing of semi-processed non-oriented Si-Al, low C electrical steel sheets. The material is deformed in tension to strains from 3 to 20% and then air-annealed at temperatures between 700 and 900 °C. The results show that the critical deformation for recrystallization (8%) is independent of annealing temperature. However, the critical recrystallized grain size increases with annealing temperature from 160 to 240 µm. After that, the grain size decreases exponentially with increasing deformation. Abnormal grain growth is observed in samples annealed at 700 °C after strains in the range from 7 to 12%. This type of behavior is also observed in specimens annealed at 800 and 900 °C, however, in this case the pre-strain range is expanded to 3–12%. Normal grain growth is observed in samples pre-deformed to strains larger than 12%. In this case, the final grain size after 2 hour anneal is about 55 µm, also independent of annealing temperature. The possible implications of these results on the magnetic properties of these materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Mader, Metall. Trans. 17A, 1277 (1986).

    Article  Google Scholar 

  2. Jongtae Park, Jerzy A. Szpunar and Sangyun Cha, Mater. Sci. Forum Vol. 408–412, 1263 (2002).

    Article  Google Scholar 

  3. L. Kestens, J.J. Jonas, P.Van Houtte, and E. Aernoudt, Metall. Trans. 27A, 2347 (1996).

    Article  CAS  Google Scholar 

  4. S. W. Cheong, E.J. Hilinski, and A.D. Rollett, Metall. Trans 34A, 1321 (2003).

    Article  CAS  Google Scholar 

  5. F. J. Humphreys, Mater. Sci. Forum Vol. 467–470, 107 (2004).

    Article  Google Scholar 

  6. K. Murakami, J. Tarasiuk, H. Regle and B. Bacroix: Mater. Sci. Forum Vol. 467–470, 893 (2004).

    Article  Google Scholar 

  7. R. W. Ashbrook, Jr. and A.R. Mader: Metall. Trans. 16A 897 (1985).

    Article  CAS  Google Scholar 

  8. F. J. Humphreys and M. Hartherly: Recrystallization and Related Annealing Phenomena, second edition (Elsevier Science, UK 2004) p.248.

    Google Scholar 

  9. Seung- Hyun Hong and Dong Nyung Lee, Mater. Sci. and Eng. A 375, 75 (2003).

    Article  Google Scholar 

  10. C. Antonione, G. Della Gatta, G. Riontino, G. Venturello, J. Mater. Sci. 8, 1 (1973).

    Article  CAS  Google Scholar 

  11. C. Antonione, F. Marino, G. Riontino, M. C. Tabasso, J. Mater. Sci. 12, 747 (1977).

    Article  CAS  Google Scholar 

  12. F. Kovac, M. Dzubinsky, Y. Sidor, J. Magn. Magn. Mater. 296, 333 (2004).

    Article  Google Scholar 

  13. Yuriy Sidor, Frantisek Kovac, Mater. Charac. 55 1 (2005).

    Article  CAS  Google Scholar 

  14. Toshiro T. and Takashi T. ISIJ. 35, 548 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salinas B, J., Salinas, A. Effect of Tensile Deformation on the Grain Size of Annealed Grain Non-Oriented Electrical Steel. MRS Online Proceedings Library 1243, 10 (2009). https://doi.org/10.1557/PROC-1243-10

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1243-10

Navigation