Skip to main content
Log in

Bound-exciton recombination in MgxZn1−xO thin films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Excitons in semiconductor alloys feel a random disorder potential leading to inhomogeneous line broadening and a lack of knowledge about the dominating recombination processes. Nevertheless, we demonstrate competing localization effects due to disorder (random potential fluctuations) and shallow point defects. We were able to spectrally separate donor-bound and quasi-free excitons within the whole wurtzite-type composition range of MgxZn1−xO (0 ≤ x ≤ 0.33) using spectrally resolved (x ≤ 0.06) and time-resolved photoluminescence (x ≥ 0.08). We found out that donor-bound excitons dominate photoluminescence spectra even for Mg-contents up to x = 0.18 and still appear for x = 0.33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adachi, Properties of Semiconductor Alloys (Wiley, Chichester, 2009).

    Book  Google Scholar 

  2. D.G. Thomas, J. Phys. Chem. Sol. 15, 86 (1960).

    Article  CAS  Google Scholar 

  3. R. Zimmermann, J. Cryst. Growth 101, 346 (1990).

    Article  Google Scholar 

  4. J. Christen and D. Bimberg, Phys. Rev. B 42, 7213 (1990).

    Article  CAS  Google Scholar 

  5. A. Müller, M. Stölzel, C.P. Dietrich, G. Benndorf, M. Lorenz and M. Grundmann, J. Appl. Phys. 107, 013704 (2010).

    Article  Google Scholar 

  6. B.K. Meyer et al., Phys. stat. sol. B 241, 231 (2004).

    Article  CAS  Google Scholar 

  7. D. Bimberg, M. Sondergelb and E. Grobe, Phys. Rev. B 4, 3451 (1971).

    Article  Google Scholar 

  8. L. Viña, S. Logothetidis and M. Cardona, Phys. Rev. B 30, 1979 (1984).

    Article  Google Scholar 

  9. M. Grundmann and C.P. Dietrich, J. Appl. Phys. 106, 123521 (2009).

    Article  Google Scholar 

  10. Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, and H. Yang, Appl. Phys. Lett. 79, 1810 (2001).

    Article  CAS  Google Scholar 

  11. S. Heitsch et al., J. Appl. Phys. 101, 083521 (2007).

    Article  Google Scholar 

  12. T.A. Wassner, B. Laumer, S. Maier, A. Laufer, B.K. Meyer, M. Stutzmann and M. Eickhoff, J. Appl. Phys. 105, 023505 (2009).

    Article  Google Scholar 

  13. [13]M. Berberan-Santos, E. Bodunov and B. Valeur, Chem. Phys. 315, 171 (2005).

    Article  CAS  Google Scholar 

  14. M. Berberan-Santos, E. Bodunov and B. Valeur, Chem. Phys. 317, 57 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank H. Hochmuth for growing the investigated samples and G. Ramm for target preparation. This work was supported by the Deutsche Forschungsgemeinschaft in the framework of Schwerpunktprogramm SPP1136 (Gr 1101/10-3), by the Graduate School BuildMoNa and by the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, C.P., Müller, A., Stölzel, M. et al. Bound-exciton recombination in MgxZn1−xO thin films. MRS Online Proceedings Library 1201, 308 (2009). https://doi.org/10.1557/PROC-1201-H03-08

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1201-H03-08

Navigation