Skip to main content
Log in

A New Method to Increase the Magnetoelectric Voltage Coefficients of Metglas/PVDF Laminate Composites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The magnetic flux density inside a Metglas sheet is much higher than that of the applied external magnetic field due to its high magnetic permeability, which is known as the magnetic flux concentration effect. Magnetic flux concentration of Metglas as a function of its sheet aspect ratio (width/length) was investigated for Metglas/Polyvinylidene fluoride (PVDF) laminar composites. Both the simulations and experimental results suggest that the magnetic flux concentration effect is markedly enhanced when the aspect ratio of a Metglas sheet is reduced. Consequently the magnetostriction of Metglas and the magnetoelectric (ME) voltage coefficients of the laminar composites are enhanced. The ME voltage coefficient for a laminar composite with a 1 mm wide and 30 mm long Metglas sheet (25 /µm thick) is 21.46 V/cm·Oe, which is much higher than those reported earlier in similar laminar composites without making use of the flux concentration effect. The results demonstrate an effective means to significantly enhance the sensitivity of the magnetostrictive/piezoelectric composites as weak magnetic field sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960), p.119.

    Google Scholar 

  2. G. T. Rado and V. J. Folen, Phys. Rev. Lett. 7, 310 (1961).

    Article  Google Scholar 

  3. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).

    Google Scholar 

  4. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  5. M. Fiebig, J. Phys. D 38, R123 (2005).

    Google Scholar 

  6. J. Ryu, S. Priya, A. V. Carazo, K. Uchino, H. E. Kim, J. Amer. Ceramic Soc. 84, 2905 (2001).

    Article  CAS  Google Scholar 

  7. C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  8. S. X. Dong, J. F. Li, and D. Viehland, J. Appl. Phys. 95, 2625 (2004).

    Article  CAS  Google Scholar 

  9. K. Mori and M. Wuttig, Appl. Phys. Lett. 81, 100 (2002).

    Article  CAS  Google Scholar 

  10. S. S. Guo, S. G. Lu, Z. Xu, X. Z. Zhao, and S. W. Or, Appl. Phys. Lett. 88, 182906 (2006).

    Article  Google Scholar 

  11. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, Appl. Phys. Lett. 88, 062510 (2006).

    Article  Google Scholar 

  12. P. M. Drljaca, F. Vincent, P.-A. Besse, R. S. Popovic, Sen. Actuat. A 97-98, 10 (2002).

    Article  Google Scholar 

  13. S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 122903 (2006).

    Article  Google Scholar 

  14. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (John Wiley and Sons, New Jersey, 2009), P. 50, 53.

    Google Scholar 

  15. D. X. Chen, E. Pardo, and A. Sanchez, IEEE Trans. Magn. 41, 2077 (2005).

    Article  Google Scholar 

  16. See http://www.comsol.com/ for COMSOL MULTIPHYSICS software package.

  17. D. X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).

    Article  Google Scholar 

  18. E. Pardo, A. Sanchez, and D. X. Chen, J. Appl. Phys. 91, 5260 (2002).

    Article  CAS  Google Scholar 

  19. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1991), P. 40.

    Book  Google Scholar 

  20. M. H. Lee, Y. Guo, and A. S. Bhalla, J. Electroceram. 4, 229 (1998).

    Article  Google Scholar 

  21. S. X. Dong, J. Zhai, J. Li, and D. Viehland, Appl. Phys. Lett. 89, 252904 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NSF under grant No. ECCS-0824202.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Z., Lu, S., Mokhariwale, N. et al. A New Method to Increase the Magnetoelectric Voltage Coefficients of Metglas/PVDF Laminate Composites. MRS Online Proceedings Library 1199, 103–108 (2009). https://doi.org/10.1557/PROC-1199-F06-08

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1199-F06-08

Navigation