Skip to main content
Log in

Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Three-dimensional electron diffraction data was collected with our recently developed module for automated diffraction tomography and used to solve inorganic as well as organic crystal structures ab initio. The diffraction data, which covers nearly the full relevant reciprocal space, was collected in the standard nano electron diffraction mode as well as in combination with the precession technique and was subsequently processed with a newly developed automated diffraction analysis and processing software package. Non-precessed data turned out to be sufficient for ab initio structure solution by direct methods for simple crystal structures only, while precessed data allowed structure solution and refinement in all of the studied cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. O'Keefe, Microscopy and Microanalysis 10 (Suppl 2), 972 (2004).

    Article  Google Scholar 

  2. X. Zou, A. Hovmöller and S. Hovmöller, Ultramicroscopy, 98, 187 (2004); J. Jansen, D. Tang, H. W. Zandbergen and H. Schenk, Acta Cryst. A54, 91 (1998); R. Kilaas, L. D. Marks and C. S. Own Ultramicroscopy 102, 233 (2005).

    Article  CAS  Google Scholar 

  3. U. Kolb, T. Gorelik, in: Th. Weirich {etet al}. (Eds.), Electron Crystallography, vol. 211, Kluwer Academic Publishers, Netherlands, NATO ASI Series E: Applied Sciences, 2005, p. 421.

    Google Scholar 

  4. B. K. Vainshtein, Structure Analysis by Electron Diffraction, Plenum, 1964.

    Google Scholar 

  5. R. Vincent, P. A. Midgley, Ultramicroscopy 53, 271 (1994).; C.S.Own, System design and verification of the precession electron diffraction technique, Ph. D. Dissertation, Northwestern University Evanston Illinois, 2005 /http://www.numis.northwestern.edu/Research/Current/precessions; A. Avilov, K. Kuligin, S. Nicolopoulos, M. Nickolskiy, K. Boulahya, J. Portillo, G. Lepeshov, B. Sobolev, J. P. Collette, N. Martin, A. C. Robins, P. Fischione, Ultramicroscopy 107, 431 (2007); M. Gemmi, S. Nicolopoulos, Ultramicroscopy 107, 483 (2007).

    Article  CAS  Google Scholar 

  6. T. E. Weirich, R. Rameau, A. Simon, S. Hovmöller, X. D. Zou, Nature 382, 144–146, (1996); I. G. Voigt-Martin, Z. X. Zhang, U. Kolb, C. Gilmore, Ultramicroscopy 68, 43-59 (1997); D. L. Dorset, Structural Electron Crystallography, Plenum Press, New York, 1995.

    Article  CAS  Google Scholar 

  7. U. Kolb, T. Gaelic, C. Keble, M. T. Otten and D. Hubert, Ultramicroscopy 107, 507 (2007)

    Article  CAS  Google Scholar 

  8. U. Kolb, T. Gaelic, M. T. Otten, Ultramicroscopy 108, 763 (2008).

    Article  CAS  Google Scholar 

  9. D. Castano Dιéz, A. Seybert, A. S. Frangakis, J. Struct. Biol. 154, 195 (2006).

    Article  Google Scholar 

  10. E. N. Maslen, V. A. Streltsov, N. R. Streltsova and N. Ishizawa, Acta Cryst. B51, 929 (1995).

    Article  CAS  Google Scholar 

  11. S. D. Jacobsen, J. R. Smyth, J. Swope, Can Miner. 36, 1053 (1998).

    Google Scholar 

  12. Y. Mozharivsky, A. O. Pecharsky, S. Bud’ko, and G. J. Miller: Chem. Mater. 16, 1580 (2004).

    Article  Google Scholar 

  13. I. V. Rozhdestvenskaya, T. Kogure, and V. A. Drits, Abstracts of Meeting “Crystal chemistry and X-ray diffraction of Minerals”, Miass 2007, p. 48–49.

    Google Scholar 

  14. M. U. Schmidt, S. Brühne, A. K. Wolf, A. Rech, J. Brüning, E. Alig, L. Fink, Ch. Buchsbaum, J. Glinnemann, J. van de Streek, F. Gozzo, M. Brunelli, F. Stowasser, T. Gorelik, E. Mugnaioli and U. Kolb Acta Cryst. B65, 189 (2009).

    Article  Google Scholar 

  15. U. Kolb and G. N. Matveeva, Zeitschrift für Kristallographie 218(4), 259 (2003), Special issue: Electron Crystallography.

    CAS  Google Scholar 

  16. T. Gorelik, U. Kolb, G. Matveeva, T. Schleuß, A. F. M. Kilbinger, J. van de Streek, in preparation.

  17. Basolite A100 purchased from Sigma Aldrich 688738.

  18. M. N. Tahir and W. Tremel, unpublished results.

  19. Hielscher USA, Inc., 19, Forest Rd., NJ 07456, Ringwood, USA.

  20. MRC: basic file format of the Medical Research Council, extended with additional headers for up to 1024 images.

  21. UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081).

  22. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).

    Article  CAS  Google Scholar 

  23. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, S. Diliqi, R. Spagna: J. Appl. Cryst. 40, 609 (2007).

    Article  CAS  Google Scholar 

  24. G. M. Sheldrick, Acta Crystallogr. A64, 112–122 (2008).

    Article  Google Scholar 

  25. S. D. Jacobsen, J. R. Smyth and J. Swope, Can. Miner. 36 (1998) 1053

    Google Scholar 

  26. E. Mugnaioli, T. Gorelik, U. Kolb, Ultramicroscopy, 109, 758 (2009).

    Article  CAS  Google Scholar 

  27. E. Mugnaioli, T. Gorelik, M. Panthoefer, Ch. Schade, W. Tremel and U. Kolb, A combination of electron diffraction tomography and precession applied to Zn1+xSb nanophases, to be published

  28. H. Putz, J. C. Schoen, M. Jansen, J. Appl. Cryst,. 32, 864 (1999).

    Article  CAS  Google Scholar 

  29. M. U. Schmidt, D. W. M. Hofmann, Ch. Buchsbaum, and H. J. Metz, Angew. Chem. Int. Ed,. 45, 1313 (2006).

    Article  CAS  Google Scholar 

  30. D. Georgieva and J.-P. Abrahams, Leiden University, unpublished results.

  31. M. C. Burla, B. Carrozzini, G. L. Cascarano, C. Giacovazzo & G. Z. Polidori Kristallogr. 217, 629 (2002).

    CAS  Google Scholar 

  32. A. J. C. Wilson Acta Cryst.. 3, 397 (1950).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft within its Sonderforschungsbereich 625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Kolb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, U., Gorelik, T. & Mugnaioli, E. Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis. MRS Online Proceedings Library 1184, 38–50 (2009). https://doi.org/10.1557/PROC-1184-GG01-05

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1184-GG01-05

Navigation