Skip to main content
Log in

Targeted Synthesis of Nanostructured Oxide Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Morphology control is a key challenge in the straightforward hydrothermal production of technologically relevant anisotropic oxide materials. The use of readily available ionic additives as growth modifiers is discussed and compared for molybdenum- and tungsten oxide-based systems, and it is extended to the formation of ternary W/Mo-oxides. Generally, the one-step hydrothermal synthesis of ternary and higher oxides is an important goal, because their properties often outperform those of the binary oxides. This holds especially for the Bi2O3-MoO3-VOx (BIMOVOx) system as a rich source of new materials. We present a new solution-based approach to α-Bi2O3 nanobelts starting from commercial Bi2O3 and K2SO4 as a key step on the way to anisotropic BIMOVOx-oxides. This hydrothermal process is an illustrative example of highly selective and efficient morphology control through an inorganic additive. As mechanistic and kinetic studies are crucial for the design of complex oxide nanomaterials, the Bi2O3-K2SO4 system is compared to our previous studies on Mo-, W- and V-oxides with respect to its hydrothermal parameter window and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. R. Rao, B. Raveau, Transition Metal Oxides (2nd Edition, Wiley-VCH, 1998).

  2. C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 31, 5 (2005).

    Article  Google Scholar 

  3. G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 42, 972 (2003).

    Article  CAS  Google Scholar 

  4. H. H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, Amsterdam, 1989).

    Google Scholar 

  5. M. T. Weller, C. S. Knee, J. Mater. Chem. 11, 701 (2001).

    Article  CAS  Google Scholar 

  6. S. W. Boettcher, J. Fan, C.-K. Tsung, Q. Shi, G. D. Stucky, Acc. Chem. Res. 40, 784 (2007).

    Article  CAS  Google Scholar 

  7. Z. L. Wang, Ann. Rev. Phys. Chem. 55, 159 (2004).

    Article  CAS  Google Scholar 

  8. S. Han, C. Li, Z. Q. Liu, B. Lei, D. H. Zhang, W. Jin, X. L. Liu, T. Tang, C. W. Zhou, Nano Lett. 7, 1241 (2004).

    Article  Google Scholar 

  9. S. Komarneni, J. Mater. Chem. 12, 1219 (1992).

    Article  Google Scholar 

  10. K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology (Noyes, Park Ridge, N. J., 2001).

    Google Scholar 

  11. B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Chem. Rev. 104, 3893 (2004).

    Article  CAS  Google Scholar 

  12. M. S. Whittingham, J.-D. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, Solid State Ionics 75, 257 (1995).

    Article  CAS  Google Scholar 

  13. A. Michailovski, J.-D. Grunwaldt, A. Baiker, R. Kiebach, W. Bensch, G. R. Patzke, Angew. Chem. 44, 5643 (2005).

    Article  CAS  Google Scholar 

  14. A. Michailovski, F. Krumeich, G. R. Patzke, Helv. Chim. Acta 87, 1029 (2004).

    Article  CAS  Google Scholar 

  15. A. Michailovski, R. Kiebach, W. Bensch, J.-D. Grunwaldt, A. Baiker, S. Komarneni, G. R. Patzke, Chem. Mater. 19, 185 (2007).

    Article  CAS  Google Scholar 

  16. A. Michailovski, M. Wörle, D. Sheptyakov, G. R. Patzke, J. Mater. Res. 22, 5 (2007).

    Article  CAS  Google Scholar 

  17. J.-D. Grunwaldt, M. Ramin, M. Rohr, A. Michailovski, G. R. Patzke, A. Baiker, Rev. Sci. Instr. 76, 054104 (2005).

    Article  Google Scholar 

  18. R. N. Vannier, G. Mairesse, F. Abraham, G. Nowogrocki, J. Solid State Chem. 122, 394 (1996).

    Article  CAS  Google Scholar 

  19. P. Begue, J. M. Rojo, R. Enjalbert, J. Galy, A. Castro, Solid State Ionics 112, 275 (1998).

    Article  CAS  Google Scholar 

  20. J. Yu, A. Kudo, Chem. Lett. 34, 1528 (2005).

    Article  CAS  Google Scholar 

  21. A. M. Beale, M. T. Le, S. Hoste, G. Sankar, Solid State Sci. 7, 1141 (2005).

    Article  CAS  Google Scholar 

  22. S. Rajam, S. Mann, J. Chem. Soc. Chem. Commun. 1789 (1990).

  23. S. P. Garcia, S. Semancik, Chem. Mater. 19, 4016 (2007).

    Article  CAS  Google Scholar 

  24. S. Komarneni, F. Gao, Q. Y. Lu, Langmuir 21, 6002 (2005).

    Article  Google Scholar 

  25. T. Welzel, W. Meyer-Zaika, M. Epple, Chem. Commun. 1204 (2004).

  26. A. M. Beale, G. Sankar, Chem. Mater. 15, 1 (2003).

    Article  Google Scholar 

  27. A. Z. Adamian, Z. N. Adamian, V. M. Aroutiounian, Sensors Actuators B 93, 416 (2003).

    Article  Google Scholar 

  28. X. Wu, W. Qin, W. He, J. Mol. Catal. A 261, 167 (2007).

    Article  CAS  Google Scholar 

  29. H.-O. Jungk, C. Feldmann, J. Mater. Sci. 36, 297 (2001).

    Article  CAS  Google Scholar 

  30. L. Kumari, J.-H. Lin, Y.-R. Ma, J. Phys.: Condens. Matter 19, 406204 (2007).

    Google Scholar 

  31. Y. Qiu, D. Liu, J. Yang, S. Yang, Adv. Mater. 18, 2604 (2006).

    Article  CAS  Google Scholar 

  32. H. W. Kim, J. H. Myung, S. H. Shim, C. Lee, Appl. Phys. A 84, 187 (2006).

    Article  CAS  Google Scholar 

  33. F. Gao, Q. Y. Lu, S. Komarneni, Chem. Commun. 531 (2005).

  34. T. P. Gujar, V. R. Shinde, C. D. Lokhande, S.-H. Han, Mat. Sci. Eng. B 133, 177 (2006).

    Article  CAS  Google Scholar 

  35. Y. Xiong, M. Wu, J. Ye, Q. Chen, Mater. Lett., on the web.

  36. R. Kiebach, N. Pienack, W. Bensch, J.-D. Grunwaldt, A. Michailovski, A. Baiker, T. Fox, Y. Zhou, G. R. Patzke, Chem. Mater., submitted.

  37. K. P. Reis, A. Ramanan, M. S. Whittingham, J. Solid State Chem. 96, 31 (1992).

    Article  CAS  Google Scholar 

  38. A. Yu, N. Kumagai, Z. Liu, Y. Lee, J. Solid State Electrochem. 2, 394 (1998).

    Article  CAS  Google Scholar 

  39. G. Chévrier, M. Touboul, A. Driouiche, M. Figlarz, J. Mater. Chem. 2, 639 (1992).

    Article  Google Scholar 

  40. O. Ovsitser, Y. Uchida, G. Mestl, G. Weinberg, A. Blume, J. Jäger, M. Dieterle, H. Hibst, R. Schlögl, J. Mol. Catal. A 185 , 291 (2002).

  41. T. Ivanova, K. A. Gesheva, G. Popkirov, M. Ganchev, E. Tzvetkova, Mater. Sci. Eng. B 119, 232 (2005).

    Article  Google Scholar 

  42. J. C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B 108, 64 (2004).

    Article  CAS  Google Scholar 

  43. S. Mann, J. Mater. Chem. 5, 935 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patzke, G.R., Zhou, Y. Targeted Synthesis of Nanostructured Oxide Materials. MRS Online Proceedings Library 1056, 501 (2007). https://doi.org/10.1557/PROC-1056-HH05-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1056-HH05-01

Navigation