Skip to main content
Log in

Some Advances in Liquid Crystal Elastomers: From Crosslinks Affected Ordering to Carbon Nanoparticles Enabled Actuation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Liquid crystal elastomers (LCE) exhibit a combination of elasticity and mesogenic ordering, yielding large thermally stimulated changes in shape. These LCE systems although well characterised, still yield open questions in the nature of how the crosslinking affects the LCE phase transition. Therefore calorimetry and deuteron-nuclear magnetic resonance were used to study the isotropic-nematic phase transition of uniformly ordered LCE. We observed that the density of crosslinkers strongly affects the nematic-isotropic phase transition. The observed spread critical transitions are explained with a dispersion of local mechanical fields that yields a weakly disordered orientational state composed of regions that exhibit temperature profiles of the nematic order parameter ranging from first order to supercritical. On increasing crosslinking density, the predominantly first order thermodynamic response transforms into a predominantly supercritical one.

Additionally, to illustrate the response of these actuating systems, it was demonstrated that a LCE can be electrically heated. The insulating LCE network was reprocessed using conducting nanoparticles dispersed in a solvent with high LCE swelling capability. This results in a low electrical resistivity surface layer of LCE network with a high concentration of conducting nanoparticles. The reprocessing allows the effective resistivity of a LCE film to be reduced from highly insulating values to values useable for electrical actuation. This layer in addition withstands large changes in geometrical shape both in contraction and expansion. Utilizing a resistive “Joule” heating effect, the reprocessed system exhibits an indirect electromechanical effect characterised by a 150length change that can be cycled for more than 10, 000 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Warner, E. M. Terentjev, Liquid Crystal Elastomers, Clarendon, Oxford, 2003.

    Google Scholar 

  2. M. Hebert, R. Kant, and P.-G. de Gennes J. Phys. I (France) 7 909 (1997).

    Article  CAS  Google Scholar 

  3. W. Kaufhold, H. Finkelmann, and H. R. Brand, Makromol. Chem. 192 2555 (1991).

    Article  CAS  Google Scholar 

  4. S. Disch, C. Schmidt, and H. Finkelmann, Makromol. Rapid. Commun. 15 303 (1994).

    Article  CAS  Google Scholar 

  5. S. M. Clarke, A. Hotta, A. R. Tajbakhsh, and E. M. Terentjev, Phys. Rev. E 64 061702 (2001).

    Article  CAS  Google Scholar 

  6. J. V. Selinger, H. G. Jeon, and B. R. Ratna, Phys. Rev. Lett. 89 225701 (2002).

    Article  Google Scholar 

  7. H. R. Brand and K. Kawasaki, Macromol. Rapid Commun. 15 251 (1994).

    Article  CAS  Google Scholar 

  8. G. G. Pereira and M. Warner, Eur. Phys. J. E 5 295 (2001).

    Article  CAS  Google Scholar 

  9. P. G. de Gennes and K. Okumura, Europhys. Lett. 63 76 (2003).

    Article  Google Scholar 

  10. A. Lebar, Z. Kutnjak, S. Zumer, H. Finkelmann, A. Sánchez-Ferrer, B. Zalar, Phys. Rev. Lett. 94 197801 (2005).

    Article  CAS  Google Scholar 

  11. G. Cordoyiannis, A. Lebar, B Zalar, S. Zumer, H. Finkelmann, and Z. Kutnjak, to be published

  12. I. Petridis and E. M. Terentjev, J. Phys. A: Math. Gen. 39 9693 (2006).

    Article  Google Scholar 

  13. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, Phys. Rev. Lett. 87 015501 (2001).

    Article  CAS  Google Scholar 

  14. P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, Phys. Rev. E 65 041720 (2002).

    Article  CAS  Google Scholar 

  15. Y. Yusuf, J. H. Huh, P. E. Cladis, H. R. Brand, H. Finkelmann and S. Kai, Phys. Rev. E 71 061702 (2005).

    Article  Google Scholar 

  16. S. Courty, J. Mine, A. R. Tajbakhsh and E. M. Terentjev, Europhys. Lett. 64 654 (2003).

    Article  CAS  Google Scholar 

  17. S. V. Ahir and E. M. Terentjev, Nat. Mater. 4 491 (2005).

    Article  CAS  Google Scholar 

  18. S. V. Ahir, A. M. Squires, A. R. Tajbakhsh, and E. M. Terentjev, Phys. Rev. B 73 011803 (2006).

    Article  Google Scholar 

  19. S. V. Ahir and E. M. Terentjev, Phys. Rev. Lett. 64 133902 (2006).

    Article  Google Scholar 

  20. M. Shahinpoor, Proc. Soc. Photo-Opt. Instrum. Eng. 3987 187 (2000).

    CAS  Google Scholar 

  21. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray and M. Shelley, Nat. Mater. 3 307 (2004).

    Article  CAS  Google Scholar 

  22. D. K. Shenoy, D. Thomsen III, A. Srinivasan, P. Keller and B. Ratna, Sens. Actuators A 96 184 (2002)

    Article  CAS  Google Scholar 

  23. M. Chambers, B. Zalar, M. Remskar, H Finkelmann and S. Zumer, Appl. Phys. Lett. 89 243116 (2006); Vir. J. Nan. Sci. & Tech. 14, 120 (2006).

    Article  Google Scholar 

  24. M. Chambers, B. Zalar, M. Remskar, H Finkelmann and S. Zumer, submitted for publication.

  25. M. Chambers, B. Zalar, M. Remskar, H Finkelmann and S. Zumer, in preparation.

  26. Kupfer and H. Finkelmann, Makromol. Chem. Rapid Commun. 12 717 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zumer, S., Chambers, M., Cordoyiannis, G. et al. Some Advances in Liquid Crystal Elastomers: From Crosslinks Affected Ordering to Carbon Nanoparticles Enabled Actuation. MRS Online Proceedings Library 1005, 406 (2007). https://doi.org/10.1557/PROC-1005-Q04-06

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1005-Q04-06

Navigation