Skip to main content
Log in

Characterization of a Micro Capillary Zone Electrophoresis System With Integrated Amorphous Silicon Based Optical Detectors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Application specific Lab-on-Microchips (ALMs) making use of the combination of complex microfluidic networks with microelectronic circuits and micro optical components allow the realization of miniaturized application specific biological and chemical processing and analysis devices. Fluorescence sensing is one of the most widely used detection technologies, e.g. for DNA fluorescence labelling in Micro Capillary Electrophoresis (µCE) due to its superior sensitivity and specificity. Unfortunately, commercially available fluorescence sensing systems are physically very large, non portable, expensive and constrain the analysis in portable diagnostic and medical care. Integrated semiconductor optoelectronic devices can provide a portable, parallel and inexpensive solution for on chip fluorescence sensing.

Most µCE applications working in the spectral range of visible light. For the integration of optical detection components a photon energy range of 1.6 eV - 3.1 eV is of interest. The a-Si:H technology accomplished due to the low dark current and high absorption coefficient against to crystalline silicon the requirements in that spectral range. In this paper we combine a:Si-H photo sensors with a fluidic micro system to detect the fluorescence of a rhodamine analyte mixture. The analyte mixture was excited by light with a wavelength in the range of ?Ex = 450 - 490 nm. The a-Si:H detector reveals a low dark current density on the order of 10-10 A/cm2 and a sufficient dynamic range of ~100 dB under illumination of ~1000 lx as a function of bias voltage. The measurement shows that the movement of the rhodamine plug in the microchannel causes a significant rise in the pin-diode photo current, which correlates to the evaluated signal of a microscope image detector. The photo current difference for excitation and additional fluorescence amounts to 2.4 µA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manz, N. Graber, H. M. Widmer, Sensors and Actuators B, 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  2. S. L. Wang, X. F. Fan, Z. R. Xu, Z. L. Fang, Electrophoresis, 26, 3602–3608 (2005).

    Article  CAS  Google Scholar 

  3. M. T. Veledo, M. de Frutos, J. C. Diez-Masa, Electrophoresis, 27, 3101–3107 (2006).

    Article  CAS  Google Scholar 

  4. B. Schneider, P. Rieve, M. Böhm, Handbook of Computer Vision and Applications, Academic Press, Boston, 237–270 (1999).

    Google Scholar 

  5. S. Benthien, T. Lulé, B. Schneider, M. Wagner, M. Verhoeven, M. Böhm, IEEE Journal of Solid State Circuits, 35(7), 939–945 (2000).

    Article  Google Scholar 

  6. E. Verpoorte, Lab on a Chip 3, 42N–52N (2003).

    Article  CAS  Google Scholar 

  7. K. B. Mogensen, H. Klank, J. P. Kutter, Electrophoresis, 25, 3498–3512 (2004).

    Article  CAS  Google Scholar 

  8. T. Kamei, B. M. Paegel, J. R . Scherer, A. M. Skelley, R. A. Street and R. A. Mathies, Anal. Chem., 75, 5300–5305 (2003).

    Article  CAS  Google Scholar 

  9. V. Namasivayam, R. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D. T. Burke and M. A. Burns, J. Micromech. Microeng., 14, 81–90 (2004).

    Article  CAS  Google Scholar 

  10. S. A. Soper, B. L. Legendre Jr, D. C. Williams, Anal. Chem., 67, 4358–4365. N. M. Schultz, R. T. Kennedy, Anal. Chem., 65, 3161-3165 (1993).

    Article  Google Scholar 

  11. N. M. Schultz, R. T. Kennedy, Anal. Chem., 65, 3161–3165 (1993).

    Article  CAS  Google Scholar 

  12. Q. Zhu, S. Coors, B. Schneider, P. Rieve, and M. Böhm, IEEE Transaction on Electron Devices, vol. 45, No. 7, 1393–1398 (1998).

    Article  CAS  Google Scholar 

  13. P. Rieve, J. Giehl, Q. Zhu and M. Böhm, Materials Research Society Spring Meeting, San Francisco, vol. 420, pp. 135–140, April 8-12, (1996).

    Google Scholar 

  14. T. Sikanen, S. Tuomikoski, R. A. Ketola, R. Kostiainen, S. Franssila and T. Kotiaho, Lab on chip, 888–896 (2005).

    Google Scholar 

  15. K. Seibel, L. Schöler, M. Walder, H. Schäfer, A. Schäfer, T. Pletzer, R. Püschl, M. Waidelich, H. Ihmels, D. Ehrhardt, and M. Böhm in Materials, Integration and Technology for Monolithic Instruments, edited by J. Theil, M. Böhm, D. Gardner, T. Blalock, (Mater. Res. Soc. Symp. Proc. 869, Warrendale, PA, 2005) pp. 119–124.

    Google Scholar 

  16. T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Seibel, M. Sommer and M. Böhm, IEEE Transaction on Electron Devices, vol. 47, No. 11, 2110–2122 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöler, L., Seibel, K., Schäfer, H. et al. Characterization of a Micro Capillary Zone Electrophoresis System With Integrated Amorphous Silicon Based Optical Detectors. MRS Online Proceedings Library 1004, 320 (2007). https://doi.org/10.1557/PROC-1004-P03-20

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1004-P03-20

Navigation