Skip to main content
Log in

Molecular-Scale Structure of Pentacene Interfaces with Si (111)

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The morphology and crystal structure of the first few molecular layers of organic semiconductor thin films at organic-inorganic interfaces are important from both electronic and structural perspectives. The first upright layer of pentacene on Si (111) forms on top of a disordered layer of strongly bonded pentacene molecules in a structure similar to the pentacene monolayers formed on insulators. We describe a high-resolution structural study of this crystalline phase of pentacene using low-temperature scanning tunneling microscopy (STM). The arrangement of molecules in these layers observed with STM agrees the results of with structural studies using scattering techniques. The imaging conditions and sample preparation techniques necessary to achieve molecular resolution can be adapted to subsequent STM and scanning tunneling spectroscopy experiments probing individual structural defects including vacancies, dislocations and grain boundaries within and between islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Street, J. E. Northrup, and A. Salleo, Phys. Rev. B 71, 165202 (2005).

    Article  Google Scholar 

  2. D. Tsiaousis and R. W. Munn, J. Chem. Phys. 117, 1833 (2002).

    Article  CAS  Google Scholar 

  3. J. Liao and D. C. Martin, Macromolecules 29, 568 (1996).

    Article  CAS  Google Scholar 

  4. A. Bolognesi, M. Berliocchi, M. Manenti, A. Di Carlo, P. Lugli, K. Lmimouni, and C. Dufour, IEEE Trans. Elect. Dev. 51, 1997 (2004).

    Article  CAS  Google Scholar 

  5. N. J. Watkins and Y. Gao, J. Appl. Phys. 94, 5782 (2003).

    Article  CAS  Google Scholar 

  6. B. Nickel, R. Barabash, R. Ruiz, N. Koch, A. Kahn, L. C. Feldman, R. F. Haglund, and G. Scoles, Phys Rev. B 70, 125401 (2004).

    Article  Google Scholar 

  7. T. Edura, H. Takahashi, M. Nakata, H. Onozato, J. Mizuno, K. Tsutsui, M. Haemori, K. Itaka, H. Koinuma, and Y. Wada, Jpn. J. Appl. Phys. 45, 3708 (2006).

    Article  CAS  Google Scholar 

  8. C. D. Dimitrakopoulos, et al., Adv. Mat. 11, 99 (1999).

    Article  Google Scholar 

  9. M. Eremtchenko, R. Temirov, D. Bauer, J. A. Schaefer, and F. S. Tautz, Phys Rev. B 72, 115430 (2001).

    Article  Google Scholar 

  10. L. Gavioli, M. Fanetti, M. Sancrotti, and M. G. Betti, Phys Rev. B 72, 035458 (2005).

    Article  Google Scholar 

  11. G. Hughes, J. Roche, D. Carty, and T. Cafolla, J. Vac. Sci. Technol. B 20, 1620 (2002).

    Article  CAS  Google Scholar 

  12. R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, A. Kahn, and G. Scoles, Phys. Rev. B 67, 125406 (2003).

    Article  Google Scholar 

  13. F.-J. Meyer zu Heringdorf, M. C. Reuter, and R. M. Tromp, Nature 412, 517 (2001).

    Article  Google Scholar 

  14. A. Tersigni, J. Shi, D. T. Jiang, and X. R. Qin, Phys. Rev. B 74, 205326 (2006).

    Article  Google Scholar 

  15. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedgegard, and T. Bjornholm, Nature 425, 698 (2003).

    Article  CAS  Google Scholar 

  16. W. Kern and D. A. Puotien, RCA Rev. 31, 187 (1970).

    CAS  Google Scholar 

  17. D. Choudhary, P. Clancy, and D. R. Bowler, Surf. Sci. 578, 20 (2005).

    Article  CAS  Google Scholar 

  18. M. Kasaya, H. Tabata, and T, Kawai, Surf. Sci. 400, 367 (1998).

    Article  CAS  Google Scholar 

  19. S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, J. Am. Chem. Soc. 126, 4084 (2004).

    Article  CAS  Google Scholar 

  20. R. J. Hamers, S. K. Coulter, M. D. Ellison, J. S. Hovis, D. F. Padowitz, M. P. Schwartz, C. M. Greenlief, and J. N. Russell, Acc. Chem. Res. 33, 617 (2000).

    Article  CAS  Google Scholar 

  21. F.-J. Meyer zu Heringdorf, M. C. Reuter, and R. M. Tromp, Appl. Phys. A 78, 787 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, S., Evans, P.G. Molecular-Scale Structure of Pentacene Interfaces with Si (111). MRS Online Proceedings Library 965, 1224 (2006). https://doi.org/10.1557/PROC-0965-S12-24

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0965-S12-24

Navigation