Skip to main content
Log in

Preparation of crystallized glass for application in fiber-type devices

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have demonstrated that 30BaO–15TiO2–30GeO2–25SiO2 (BTGS25) glass is a candidate for fiber-type nonlinear optical devices using crystallization of glass matrix. We determined the glass composition is suitable for crystallized fiber using partial substitution of Ge in 30BaO–15TiO2–55GeO2 (BTG55) by Si. The BTGS25 satisfied both thermal stability for fiber drawing and electronic polarizability for nonlinear optical property. After crystallization, the BTGS25 bulk crystallized glass showed surface crystallization behavior with the polar c-orientation of fresnoite phase, which was favorable for large second-order optical susceptibility. Following the results of the bulk glass, we prepared the BTGS25 glass fiber without precipitation of fresnoite crystallites. The BTGS25 crystallized fiber also showed c-oriented surface crystallization of fresnoite and second harmonic generation, which shows that the crystallized fiber is a promising material for fiber-type optical active devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J.T. Alfors, M.C. Stinson, R.A. Matthews, A. Pabst: Seven new barium minerals from eastern Fresno County, California. Am. Mineral. 50, 314 1965

    CAS  Google Scholar 

  2. P.B. Moore and J. Louisnathan: Fresnoite: Unusual titanium coordination. Science 156, 1361 1967

    Article  CAS  Google Scholar 

  3. M.A. Roberts, G. Sankar, J.M. Thomas, R.H. Jones, H. Du, J. Chen, W. Pang, R. Xu: Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium. Nature 381, 401 1996

    Article  CAS  Google Scholar 

  4. M.C. Foster, D.J. Arbogast, R.M. Nielson, P. Photinos, S.C. Abrahams: Fresnoite: A new ferroelectric mineral. J. Appl. Phys. 85, 2299 1999

    Article  CAS  Google Scholar 

  5. A. Halliyal, A.S. Bhalla, R.E. Newnham, L.E. Cross: Barium titanium germanate (Ba2TiGe2O8) and barium titanium silicate (Ba2TiSi2O8) pyroelectric glass-ceramics. J. Mater. Sci. 16, 1023 1981

    Article  CAS  Google Scholar 

  6. M. Kimura, Y. Fujino, T. Kawamura: New piezoelectric crystal: Synthetic fresnoite (Ba2TiSi2O8). Appl. Phys. Lett. 29, 227 1976

    Article  Google Scholar 

  7. A. Halliyal, A. Safari, A.S. Bhalla, R.E. Newnham, L.E. Cross: Grain-oriented glass-ceramics for piezoelectric devices. J. Am. Ceram. Soc. 67, 331 1984

    Article  CAS  Google Scholar 

  8. P.S. Bechthold, S. Haussuhl, E. Michael, J. Eckstein, K. Recker, F. Wallrafen: Second harmonic generation in fresnoite, Ba2TiSi2O8. Phys. Lett. A 65, 453 1978

    Article  Google Scholar 

  9. Y. Takahashi, Y. Benino, T. Fujiwara, T. Komatsu: Large second-order optical nonlinearities of fresnoite-type crystals in transparent surface-crystallized glasses. J. Appl. Phys. 95, 3503 2004

    Article  CAS  Google Scholar 

  10. Y. Takahashi, Y. Benino, T. Fujiwara, T. Komatsu: Formation mechanism of ferroelastic Ba2TiGe2O8 and second order optical non-linearity in transparent crystallized glasses. J. Non-Cryst. Solids 316, 320 2003

    Article  CAS  Google Scholar 

  11. H. Masai, T. Fujiwara, Y. Benino, T. Komatsu: Large second-order optical nonlinearity in 30BaO–15TiO2–55GeO2 surface crystallized glass with strong orientation. J. Appl. Phys. 100, 023526 2006.

    Article  Google Scholar 

  12. H. Masai, T. Fujiwara, Y. Benino, T. Komatsu, H. Mori: Selective surface crystallization of non-stoichiometric 30BaO–15TiO2–55GeO2 glass. J. Appl. Phys. 101, 033530 2007

    Article  Google Scholar 

  13. Y. Hane, T. Komatsu, Y. Benino, T. Fujiwara: Transparent nonlinear optical crystallized glass fibers with highly oriented Ba2TiGe2O8 crystals. J. Appl. Phys. 103, 063512 2008

    Article  Google Scholar 

  14. Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, T. Komatsu: Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass. Appl. Phys. Lett. 89, 091110 2005

    Article  Google Scholar 

  15. H. Masai, S. Tsuji, T. Fujiwara, Y. Benino, T. Komatsu: Structure and nonlinear optical properties of BaO–TiO2–SiO2 glass containing Ba2TiSi2O8 crystal. J. Non-Cryst. Solids 353, 2258 2007

    Article  CAS  Google Scholar 

  16. JCPDS No. 01-077-0389. International Center for Diffraction Data Newton Square, PA.

  17. JCPDS No. 01-084-0924. International Center for Diffraction Data Newton Square, PA.

  18. H. Schmid, P. Genequand, H. Tippmann, G. Pouilly, H. Guedu: Pyroelectricity and related properties in the fresnoite pseudobinary system (barium titanium germanate-barium titanium silicate (Ba2TiGe2O8–Ba2TiSi2O8). J. Mater. Sci. 13, 2257 1978

    Article  CAS  Google Scholar 

  19. K. Iijima, F. Marumo, M. Kimura, T. Kawamura: Synthesis and crystal structures of compounds in the system barium titanium germanate (Ba2TiGe2O8)-barium titanium silicate (Ba2TiSi2O8). Mineral. J. 11, 107 1982

    Article  CAS  Google Scholar 

  20. T. Honma, T. Komatsu, Y. Benino: Patterning of c-axis-oriented Ba2TiX2O8 (X = Si, Ge) crystal lines in glass by laser irradiation and their second-order optical nonlinearities. J. Mater. Res. 23, 885 2008

    Article  CAS  Google Scholar 

  21. T. Honma, Y. Benino, T. Fujiwara, T. Komatsu: Transition metal atom heat processing for writing of crystal lines in glass. Appl. Phys. Lett. 88, 231105 2006

    Article  Google Scholar 

  22. V. Dimitrov and S. Sakka: Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736 1996

    Article  CAS  Google Scholar 

  23. V. Dimitrov and T. Komatsu: Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J. Non-Cryst. Solids 249, 160 1999

    Article  CAS  Google Scholar 

  24. J.A. Duffy and M.D. Ingram: Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Chem. Soc. 93, 6448 1971

    Article  CAS  Google Scholar 

  25. J.A. Duffy and M.D. Ingram: An interpretation of glass chemistry in terms of the optical basicity concept. J. Non-Cryst. Solids 21, 373 1976

    Article  CAS  Google Scholar 

  26. S. Kosaka, Y. Benino, T. Fujiwara, V. Dimitrov, T. Komatsu: Synthesis and nonlinear optical properties of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals in glasses with high TiO2 contents. J. Solid State Chem. 178, 2067 2005

    Article  CAS  Google Scholar 

  27. JCPDS No. 00-038-1254. International Center for Diffraction Data Newton Square, PA.

  28. JCPDS No. 00-038-1245. International Center for Diffraction Data Newton Square, PA.

  29. JCPDS No. 00-038-1241. International Center for Diffraction Data Newton Square, PA.

  30. N. Iwafuchi, T. Fujiwara, Y. Benino, T. Komatsu: Optical characteristics of nano-crystallized glass fiber with second-order optical nonlinearity. J. Ceram. Soc. Jpn. (in press)

  31. T. Honma, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu: Nonlinear optical crystal-line writing in glass by yttrium aluminum garnet laser irradiation. Appl. Phys. Lett. 82, 892 2003

    Article  CAS  Google Scholar 

  32. K. Hirose, T. Honma, Y. Benino, T. Komatsu: Glass-ceramics with LiFePO4 crystals and crystal line patterning in glass by YAG laser irradiation. Solid State Ionics 178, 801 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor T. Komatsu and Dr. T. Honma (Nagaoka University of Technology) for taking the SHG microscope images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Masai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masai, H., Iwafuchi, N., Takahashi, Y. et al. Preparation of crystallized glass for application in fiber-type devices. Journal of Materials Research 24, 288–294 (2009). https://doi.org/10.1557/JMR.2009.0021

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0021

Navigation