Skip to main content
Log in

Influence of cooling rate on the structure and properties of a Cu–Zr–Ti–Ag glassy alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of the cooling rate on the structure, microhardness, relaxation, and devitrification behavior of Cu44Ag15Zr36Ti5 glassy alloy on heating is studied in the present work. According to transmission electron microscopy investigations, the structures of Cu44Ag15Zr36Ti5 glassy ribbon and bulk samples are somewhat different. The structure of the ribbon samples is amorphous while, the nanoscale clusters of the crystalline phase (highly ordered regions) are formed in the bulk samples. It is reflected in the shift of the x-ray diffraction peak, in the magnitude of the heat of structure relaxation and crystallization, as well as in the change in the Vickers microhardness. An analysis of the cooling curve is also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. A. Inoue: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 1995

    Article  CAS  Google Scholar 

  2. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999

    Article  CAS  Google Scholar 

  3. M.H. Cohen G.S. Grest: Liquid-glass transition, a free-volume approach Phys. Rev. B: Condens. Matter 20, 1077 1979

    Article  CAS  Google Scholar 

  4. A. van den Beukel J. Sietsma: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 1990

    Article  Google Scholar 

  5. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 1995

    Article  CAS  Google Scholar 

  6. R. Busch: The thermophysical properties of bulk metallic glass-forming liquids. J. Met. 52, 39 2000

    CAS  Google Scholar 

  7. D.V. Louzguine-Luzgin A. Inoue: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 2005

    Article  CAS  Google Scholar 

  8. J.H. Perepezko R.J. Hebert: Amorphous aluminum alloys-synthesis and stability. J. Metall. 54, 34 2002

    CAS  Google Scholar 

  9. T. Egami: Atomistic mechanism of bulk metallic glass formation. J. Non-Cryst. Solids 317, 30 2003

    Article  CAS  Google Scholar 

  10. Z.P. Lu C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 2002

    Article  CAS  Google Scholar 

  11. D.B. Miracle, W.S. Sanders O.N. Senkov: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 2003

    Article  CAS  Google Scholar 

  12. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006

    Article  CAS  Google Scholar 

  13. A. Inoue, W. Zhang, T. Zhang K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 2001

    Article  CAS  Google Scholar 

  14. X.H. Lin W.L. Johnson: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 1995

    Article  CAS  Google Scholar 

  15. D.V. Louzguine A. Inoue: Structural and thermal investigations of a high-strength Cu-Zr-Ti-Co bulk metallic glass. Philos. Mag. Lett. 83, 191 2003

    Article  CAS  Google Scholar 

  16. A. Inoue W. Zhang: Bulk glassy Cu-based alloys with a large supercooled liquid region of 110 K. Appl. Phys. Lett. 83, 2351 2003

    Article  CAS  Google Scholar 

  17. A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari A.L. Greer: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 2005

    Article  CAS  Google Scholar 

  18. A.S. Aronin, G.E. Abrosimova, A.F. Gurov, Yu.V. Kir’yanov V.V. Molokanov: Nanocrystallization of bulk Zr-Cu-Ti metallic glass. Mater. Sci. Eng., A 304–306, 375 2001

    Article  Google Scholar 

  19. A.L. Greer: Metallic glasses. Science 267, 1947 1995

    Article  CAS  Google Scholar 

  20. P.J. Desré: On the effect of the number of components on glass-forming ability of alloys from the liquid state: Application to the new generation of multicomponent bulk glasses. Mater. Trans., JIM 38, 583 1997

    Article  Google Scholar 

  21. D. Nagahama, T. Ohkubo, T. Mukai K. Hono: Characterization of nanocrystal dispersed Cu60Zr30Ti10 metallic glass. Mater. Trans. 46, 1264 2005

    Article  CAS  Google Scholar 

  22. J.Z. Jiang, J. Saida, H. Kato, T. Ohsuna A. Inoue: Is Cu60Ti10Zr30 a bulk glass-forming alloy? Appl. Phys. Lett. 82, 4041 2003

    Article  CAS  Google Scholar 

  23. R.L. Freed J.B. Van der Sande: Study of the crystallization of two non-crystalline Cu-Zr alloys. J. Non-Cryst. Solids 27, 9 1978

    Article  CAS  Google Scholar 

  24. D.V. Louzguine A. Inoue: Nanocrystallization of Cu-(Zr or Hf)-Ti metallic glasses. J. Mater. Res. 17, 2112 2002

    Article  CAS  Google Scholar 

  25. M. Kasai, J. Saida, M. Matsushita, T. Osuna, E. Matsubara A. Inoue: Structure and crystallization of rapidly quenched Cu-(Zr or Hf)-Ti alloys containing nanocrystalline particles. J. Phys.: Condens. Matter 14, 13867 2002

    CAS  Google Scholar 

  26. W. Zhang A. Inoue: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system. J. Mater. Res. 21, 234 2006

    Article  CAS  Google Scholar 

  27. C-L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma J. Xu: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 2006

    Article  CAS  Google Scholar 

  28. D-S. Sung, O.J. Kwon, E. Fleury, K.B. Kim, J.C. Lee, D.H. Kim Y.C. Kim: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Met. Mater. Int. 10, 575 2004

    Article  CAS  Google Scholar 

  29. Q. Zhang, W. Zhang A. Inoue: Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater. Trans. 48, 629 2007

    Article  CAS  Google Scholar 

  30. D.V. Louzguine-Luzgin, G. Xie, W. Zhang A. Inoue: Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys. Mater. Sci. Eng. 465, 146 2007

    Article  CAS  Google Scholar 

  31. J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury K. Hono: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 2005

    Article  CAS  Google Scholar 

  32. A.A. Kundig, M. Ohnuma, T. Ohkubo, T. Abe K. Hono: Glass formation and phase separation in the Ag-Cu-Zr system. Scripta Mater. 55, 449 2006

    Article  CAS  Google Scholar 

  33. D.V. Louzguine A. Inoue: Nanoparticles with icosahedral symmetry in Cu-based bulk glass former induced by Pd addition. Scripta Mater. 48, 1325 2003

    Article  CAS  Google Scholar 

  34. D.V. Louzguine, A.R. Yavari A. Inoue: Devitrification behaviour of Cu-Zr-Ti-Pd bulk glassy alloys. Philos. Mag. 83, 2989 2003

    Article  CAS  Google Scholar 

  35. D.V. Louzguine-Luzgin, A. Inoue, D. Nagahama K. Hono: Composition and structure of Cu-based nanoicosahedral phase in Cu-Zr-Ti-Pd alloy. Appl. Phys. Lett. 87, 211918 2005

    Article  CAS  Google Scholar 

  36. D.V. Louzguine A. Inoue: Gold as an alloying element promoting formation of a nanoicosahedral phase in a Cu-based alloy. J. Alloys Compd. 361, 153 2003

    Article  CAS  Google Scholar 

  37. D.V. Louzguine A. Inoue: Effect of Ni on stabilization of the supercooled liquid and devitrification of Cu-Zr-Ti bulk glassy alloys. J. Non-Cryst. Solids 325, 187 2003

    Article  CAS  Google Scholar 

  38. S. Venkataraman, B. Bartusch, C. Mickel, K.B. Kim, J. Das, S. Scudino, M. Stoica, D.J. Sordelet J. Eckert: Metallic glass formation in the Cu47Ti33Zr11Ni8Si1 alloy. Mater. Sci. Eng., A 444, 257 2007

    Article  CAS  Google Scholar 

  39. H. Wang, X.P. Song, X.D. Yao, H.F. Zhang Z.Q. Hu: Crystallization behavior of (Cu60Zr30Ti10)99Sn1 bulk metallic glass. J. Mater. Sci. Technol. 21, 51 2005

    Google Scholar 

  40. D.V. Louzguine-Luzgin, A.D. Setyawan, H. Kato A. Inoue: Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Philos. Mag. 87, 1845 2007

    Article  CAS  Google Scholar 

  41. A.D. Setyawan, H. Kato, J. Saida A. Inoue: Origin of the effect of the gas atmosphere during mold-casting Zr65Al7.5Ni10Pd17.5 bulk glassy or nano-quasicrystal-forming alloy. Mater. Trans. 48, 1266 2007

    Article  CAS  Google Scholar 

  42. S.R. Elliot: Physics of Amorphous Materials Longman Group Harlow, UK 1990 20–31

    Google Scholar 

  43. D.V. Louzguine-Luzgin, A.D. Setyawan, H. Kato A. Inoue: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 2006

    Article  CAS  Google Scholar 

  44. A.N. Kolmogorov: On the static theory of metal crystallization. Isz. Akad. Nauk. USSR Ser. Matem. 3, 355 1937

    Google Scholar 

  45. M.J. Avrami: Granulation, phase change, and microstructure: Kinetics of phase change. J. Chem. Phys. 9, 177 1941

    Article  CAS  Google Scholar 

  46. M.W.A. Johnson K.F. Mehl: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Mining. Met. Eng. 135, 416 1939

    Google Scholar 

  47. J.W. Christian: The Theory of Transformations in Metals and Alloys Pergamon Press Oxford, UK 1975 136

    Google Scholar 

  48. U.E. Klotz, C. Liu, P.J. Uggowitzer J.F. Löffler: Experimental investigation of the Cu–Ti–Zr system at 800 °C. Intermetallics 15, 1666 2007

    Article  CAS  Google Scholar 

  49. R. Arroyave, T.W. Eagar L. Kaufman: Thermodynamic assessment of the Cu–Ti–Zr system. J. Alloys Compd. 351, 158 2003

    Article  CAS  Google Scholar 

  50. D.V. Louzguine A. Inoue: Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl. Phys. Lett. 79, 3410 2001

    Article  CAS  Google Scholar 

  51. D.V. Louzguine-Luzgin, A. Inoue W.J. Botta: Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl. Phys. Lett. 88, 011911 2006

    Article  CAS  Google Scholar 

  52. K. Levenberg: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164 1944

    Article  Google Scholar 

  53. D. Marquardt: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431 1963

    Article  Google Scholar 

  54. A. Inoue, Y.H. Kim T. Masumoto: A large tensile elongation induced by crystallization in an amorphous Al88Ni10Ce2 alloy. Mater. Trans., JIM 33, 487 1992

    Article  Google Scholar 

  55. Z.C. Zhong, X.Y. Jiang A.L. Greer Micro structure and hardening of Al-based nanophase composites. Mater. Sci. Eng., A, 226–228, 531 1997

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research and Development Project on Advanced Metallic Glasses, Inorganic Materials and Joining Technology as well as by Grant-in-Aid “Priority Area on Science and Technology of Microwave-Induced, Thermally Non-Equilibrium Reaction Field” No. 18070001 from Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Louzguine-Luzgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louzguine-Luzgin, D.V., Saito, T., Saida, J. et al. Influence of cooling rate on the structure and properties of a Cu–Zr–Ti–Ag glassy alloy. Journal of Materials Research 23, 515–522 (2008). https://doi.org/10.1557/JMR.2008.0066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0066

Navigation