Skip to main content
Log in

Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nitrogen-doped titanium oxides nanostructures were synthesized by a new method proposed here from titanium oxysulfate precursor in a NH4OH solution under hydrothermal conditions without any extra templates as structure driving agents. The material synthesized with NH4OH was an ammonium titanate and showed curled nanosheets, nanofibers or nanorods morphologies depending on the molar ratio of NH4OH to titanium precursor and the hydrothermal temperature. The nanofibrous titanates had a high surface area over 500 m2 g−1 and a pore volume of 0.72 cm3 g−1. The calcination of as-synthesized material at 673 K produced a titanium oxynitride TiO2−xNx with anatase phase, which absorbed visible light. Ion exchange of ammonium ion of the titanate with sodium Na2Ti3O7−xNx enhanced the thermal stability of the titanate phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1993).

    Article  Google Scholar 

  2. A.M. Morales and C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  3. M. Nath and C.N.R. Rao: New metal disulfide nanotubes. J. Am. Chem. Soc. 123, 4841 (2001).

    Article  CAS  Google Scholar 

  4. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demūsar, P. Stadelmann, F. Lévy and D. Mihailovic: Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479 (2001).

    Article  CAS  Google Scholar 

  5. M. Harada and M. Adachi: Surfactant-mediated fabrication of silica nanotubes. Adv. Mater. 12, 839 (2000).

    Article  CAS  Google Scholar 

  6. H.C. Lee, H.J. Kim, S.H. Chung, K.H. Lee, H.C. Lee and J.S. Lee: Synthesis of unidirectional alumina nanostructures without added organic. J. Am. Chem. Soc. 125, 2882 (2003).

    Article  CAS  Google Scholar 

  7. H.J. Kim, H.C. Lee, C.H. Rhee, S.H. Chung, K.H. Lee, H.C. Lee and J.S. Lee: Alumina nanotubes containing lithium of high ion mobility. J. Am. Chem. Soc. 125, 13354 (2003).

    Article  CAS  Google Scholar 

  8. M. Niederberger, H. Muhr-J., F. Krumeich, F. Bieri, D. Günther and R. Nesper: Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem. Mater. 12, 1995 (2000).

    Article  CAS  Google Scholar 

  9. M. Niederberger, F. Krumeich, H. Muhr-J., M. Müller and R. Nesper: Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J. Mater. Chem. 11, 1941 (2001).

    Article  CAS  Google Scholar 

  10. K. Lee, W.S. Seo and J.T. Park: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408 (2003).

    Article  CAS  Google Scholar 

  11. C.N.R. Rao, B.C. Satishkumar and A. Govindaraj: Zirconia nanotubes. Chem. Commun. 16, 1581 (1997).

    Article  Google Scholar 

  12. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 37, 238 (1972).

    Google Scholar 

  13. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko and C.A. Grimes: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).

    Article  CAS  Google Scholar 

  14. O’B. Regan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  15. S. Matsuda and A. Kato: Titanium oxide based catalysts—a review. Appl. Catal. 8, 149 (1983).

    Article  CAS  Google Scholar 

  16. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  17. C.A. Melendres, A. Narayanasamy, V.A. Maroni and R.W. Siegel: Raman spectroscopy of nanophase TiO2. J. Mater. Res. 4, 1246 (1989).

    Article  CAS  Google Scholar 

  18. P. Hoyer: Formation of titanium dioxide nanotube array. Langmuir 12, 1411 (1996).

    Article  CAS  Google Scholar 

  19. J.H. Jung, H. Kobayashi, Van K.J.C. Bommel, S. Shinkai and T. Shimizu: Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater. 14, 1445 (2002).

    Article  CAS  Google Scholar 

  20. S. Yoo, S.A. Akbar and K.H. Sandhage: Nanocarving of bulk titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas. Adv. Mater. 16, 260 (2004).

    Article  CAS  Google Scholar 

  21. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  22. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999).

    Article  CAS  Google Scholar 

  23. Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen and A. Gedanken: Sonochemical synthesis of titania whiskers and nanotubes. Chem. Commun. 24, 2616 (2001).

    Article  Google Scholar 

  24. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan and L.-M. Peng: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).

    Article  CAS  Google Scholar 

  25. D.-S. Seo, J.-K. Lee and H. Kim: Preparation of nanotube-shaped TiO2 powder. J. Cryst. Growth 229, 428 (2001).

    Article  CAS  Google Scholar 

  26. Q. Chen, G.H. Du, S. Zhang and L.M. Peng: The structure of trititanate nanotubes. Acta Crystallogr. B58, 587 (2002).

    Article  CAS  Google Scholar 

  27. Z.Y. Yuan, W. Zhou and B.L. Su: Hierarchical interlinked structure of titanium oxide nanofibers. Chem. Commun. 11, 1201 (2002).

    Google Scholar 

  28. Y.F. Chen, C.-Y. Lee, M.-Y. Yeng and H.-T. Chiu: Preparing titanium oxide with various morphologies. Mater. Chem. Phys. 81, 39 (2003).

    Article  CAS  Google Scholar 

  29. S. Brunauer, P.H. Emmett and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  30. M. Kruk, M. Jaroniec and A. Sayari: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267 (1997).

    Article  CAS  Google Scholar 

  31. K.S.W. Sing, D.H. Evertt, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  32. H. Zhu, X. Gao, Y. Lan, D. Song, Y. Xi and J. Zhao: Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J. Am. Chem. Soc. 126, 8380 (2004).

    Article  CAS  Google Scholar 

  33. Y. Sakatani, H. Koite, and Y. Takeuchi: Titanium oxide photocatalyst coating material. Japanese Patent 322816, 2001.

    Google Scholar 

  34. H. Tokudome and M. Miyauchi: N-doped TiO2 nanotube with visible light activity. Chem. Lett 33, 1108 (2004).

    Article  CAS  Google Scholar 

  35. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout and J.L. Gole: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).

    Article  CAS  Google Scholar 

  36. J.L. Gole, J.D. Stout, C. Burda, Y. Lou and X. Chen: Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004).

    Article  CAS  Google Scholar 

  37. C.H. Rhee, S.W. Bae and J.S. Lee: Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chem. Lett. 34, 2 (2005).

    Article  Google Scholar 

  38. G. Ramis, G. Busca, V. Lorenzelli and P. Forzatti: Fourier transform infrared study of the adsorption and co-adsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase. Appl. Catal. 64, 243 (1990).

    Article  CAS  Google Scholar 

  39. N.C. Saha and H.G. Tompkins: Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, C.H., Lee, J.S. & Chung, S.H. Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. Journal of Materials Research 20, 3011–3020 (2005). https://doi.org/10.1557/JMR.2005.0376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0376

Navigation