Skip to main content
Log in

Metalorganic chemical vapor deposition of highly oriented thin film composites of V2O5 and V6O13: Suppression of the metal–semiconductor transition in V6O13

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin films of vanadium oxides were grown on fused quartz by metalorganic chemical vapor deposition using vanadyl acetylacetonate as the precursor. Growth at temperatures ≥560 °Cresults in composites of strongly (00l)-oriented V2O5 and V6O13. The dominant phase of the film changes from V2O5 to V6O13, and back to V2O5, as the growth temperature is raused from 560 to 570 °C, then to 580 °C, as evidenced by x-ray diffraction and Rutherfor d backscattering analyses. This reentrant-type growth trend was interpreted on the basis of the small difference in the free energy of formation of V2O5 and V6O13 and the presence of metal–oxygen bonds in the precursor. In contrast with single-crystalline V6O13, the film predominantly composed of highly oriented single-crystalline platelets of V6O13 did not undergo the semiconductor–metal transition at -123° K, despite the connectivity being well above the percolation threshold. Instead, a semiconductor-to-semiconductor transition was observed in this film, which is explauned in terms of the observedrelaxation of the edges of all the platelets of metallic V6O13 to semiconducting V2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hevesi, L.B. Kiss, M.I. Torok, and L. Nanau: Electron concentration in vanadium(V) oxide single crystals as determined by 1/f noise measurements. Phys. Status Solidi, Appl. Res. A 81, K67 (1984).

    Article  Google Scholar 

  2. K. Kawashima, Y. Ueda, K. Kosuge, and S. Kachi: Crystal growth and some electric properties of V6O13. J. Cryst. Growth 26, 321 (1974).

    Article  CAS  Google Scholar 

  3. S. Kachi, T. Takada, and K. Kosuge: Electrical conductivity of vanadium oxides. J. Phys. Soc. Jpn. 18, 1839 (1963).

    Article  CAS  Google Scholar 

  4. I. Kawada, M. Nakano, M. Saeki, M. Ishii, N. Kimizuka, and M. Nakahira: Phase transition of vanadium oxide (V6O13). J. Less-Common Met. 32, 171 (1973).

    Article  CAS  Google Scholar 

  5. A.C. Gossard, F.J. Di Salvo, L.C. Erich, J.P. Remeika, H. Yasuoka, K. Kosuge, and S. Kachi: Microscopic magnetic properties of vanadium oxides: II. V3O5, V5O9, V6O11, and V6O13. Phys. Rev. B 10, 4178 (1974).

    Article  CAS  Google Scholar 

  6. J. Haber, M. Witko, and R. Tokarz: Vanadium pentoxide I. Structures and properties. Appl. Catal. A: General 157, 3 (1997).

    Article  CAS  Google Scholar 

  7. R. Enjalbert and J. Galy: A refinement of the structure of vanadium pentoxide. Acta Crystallogr. C 42, 1467 (1986).

    Article  Google Scholar 

  8. R. De Gryse, J.P. Landuyt, A. Vermeire, and J. Vennik: A combined LEIS (low energy ion scattering)-LEED study of the V6O13(001) surface. Appl. Surf. Sci. 6, 430 (1980).

    Article  Google Scholar 

  9. V.I. Parvulescu, S. Boghosian, V. Parvulescu, S.M. Jung, and P. Grange: Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalysts. J. Catal. 217, 172 (2003).

    CAS  Google Scholar 

  10. Z. Huang, Z. Zhu, Z. Liu, and Q. Liu: Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. J. Catal. 214, 213 (2003).

    Article  CAS  Google Scholar 

  11. S. Zhuiykov, W. Wlodarski, and Y. Li: Nanocrystalline V2O5-TiO2 thin-films for oxygen sensing prepared by sol-gel process. Sens. Actuators B 77, 484 (2001).

    Article  CAS  Google Scholar 

  12. S. Passerini, A.L. Tipton, and W.H. Smyrl: Spin coated V2O5 XRG as optically passive electrode in laminated electrochromic devices. Sol. Energy Mater. Sol. Cells 39, 167 (1995).

    Article  CAS  Google Scholar 

  13. J.M. McGraw, C.S. Bahn, P.A. Parilla, J.D. Perkins, D.W. Readey, and D.S. Ginley: Li ion diffusion measurements in V2O5 and Li(Co1−xAlx)O2 thin-film battery cathodes. Electrochim. Acta. 45, 187 (1999).

    Article  CAS  Google Scholar 

  14. M.E. Garcia, E. Webb III, and S.H. Garofalini: Molecular dynamics simulation of V2O5/Li2SiO3 Interface. J. Electrochem. Soc. 145, 2155 (1998).

    Article  CAS  Google Scholar 

  15. G.J. Fang, Z.L. Liu, Y.Q. Wang, H.H. Liu, and K.L. Yao: Oriented growth of V2O5 electrochemic thin films on transparent conductive glass by pulsed excimer laser ablation technique. J. Phys. D: Appl. Phys. 33, 3018 (2000).

    Article  CAS  Google Scholar 

  16. J.M. McGraw, J.D. Perkins, F. Hasoon, P.A. Parilla, C. Warmsingh, and D.S. Ginley: Pulsed laser deposition of oriented V2O5 thin films. J. Mater. Res. 15, 2249 (2000).

    Article  CAS  Google Scholar 

  17. D. Barreca, L. Armelao, F. Caccavale, V.D. Noto, A. Gregori, G.A. Rizzi, and E. Tondello: Highly oriented V2O5 nanocrystalline thin films by plasma-enhanced chemical vapour deposition. Chem. Mater. 12, 98 (2000).

    Article  CAS  Google Scholar 

  18. T.D. Manning, I.P. Parkin, R.J.H. Clark, D. Sheel, M.E. Pemble, and D. Vernadou: Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides. J. Mater. Chem. 12, 2936 (2002).

    Article  CAS  Google Scholar 

  19. A.M. Abo El Soud, B. Mansour, and L.I. Soliman: Optical and electrical properties of V2O5 thin films. Thin Solid Films 247, 140 (1994).

    Article  Google Scholar 

  20. S. Kobayashi, T. Takemura, and F. Kaneko: Dependence of absorption in electrochromic V2O5 thin films on crystallinity. Jpn. J. Appl. Phys. 26, L1274 (1987).

    Article  Google Scholar 

  21. M.Z.A. Munshi, W.H. Smyrl, and C. Schmidtke: Insertion reaction of V6O13 electrodes reversibly incorporating divalent cations. Solid State Ionics 47, 265 (1991).

    Article  CAS  Google Scholar 

  22. J.S. Brauthwaute, C.R.A. Catlow, J.H. Harding, and J.D. Gale: A theoretical study of lithium intercalation into V6O13-a combined classical, quantum mechanical approach. Phys. Chem. Chem. Phys. 3, 4052 (2001).

    Article  Google Scholar 

  23. A. Gorenstein, A. Khelfa, J.P. Guesdon, G.A. Nazri, O.M. Hussaun, I. Ivanov, and C. Julien: The growth and electrochemical properties of V6O13 flash-evaporateed films. Solid State Ionics 76, 133 (1995).

    Article  CAS  Google Scholar 

  24. X.J. Wang, H.D. Li, Y.J. Fei, X. Wang, Y.Y. Xiong, Y.X. Nie, and K.A. Feng: XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering. Appl. Surf. Sci. 177, 8 (2001).

    Article  CAS  Google Scholar 

  25. M.B. Sahana, M.S. Dharmaprakash, and S.A. Shivashankar: Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate. J. Mater. Chem. 12, 333 (2002).

    Article  CAS  Google Scholar 

  26. M.B. Sahana, G.N. Subbanna, and S.A. Shivashankar: Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition. J. Appl. Phys. 92, 6495 (2002).

    Article  CAS  Google Scholar 

  27. M.B. Sahana and S.A. Shivashankar: Growth of nanowires of _-NaxV2O5 by metalorganic chemical vapor deposition. J. Mater. Chem. 13, 2254 (2003).

    Article  CAS  Google Scholar 

  28. Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction File (PDF) database, published annually by the International Centre for Diffraction Data, USA.

  29. N. Kenay, O.R. Kannewurf, and D.H. Whitmore: Optical absorption coefficients of vanadium pentoxide single crystals. J. Phys. Chem. Solids 27, 1237 (1966).

    Article  Google Scholar 

  30. J-G. Yoon, H.K. Oh, and S.J. Lee: Growth characteristics and surface roughening of vapor-deposited MgO thin films. Phys. Rev. B 60, 2839 (1999).

    Article  CAS  Google Scholar 

  31. C.V. Thompson and H.I. Smith: Surface-energy-driven secondary graun growth in ultrathin (<100 nm) films of silicon. Appl. Phys. Lett. 44, 603 (1984).

    Article  CAS  Google Scholar 

  32. H.I. Smith and D.C. Flanders: Oriented crystal growth on amorphous substrates using artificial surface-relief gratings. Appl. Phys. Lett. 32, 349 (1978).

    Article  CAS  Google Scholar 

  33. A.U. Mane and S.A. Shivashankar: MOCVD of cobalt oxide thin films: Dependence of growth, microstructure, and optical properties on the source of oxidation. J. Cryst. Growth 254, 368 (2003).

    Article  CAS  Google Scholar 

  34. K. Shalini: Development and Application of Metalorganic Complexes as Precursors for the Chemical Vapor Deposition of Oxide Thin Films. Ph.D. Thesis, Indian Institute of Science, Bangalore, India, 2002.

    Google Scholar 

  35. P. Deines, R.H. Nafziger, G.C. Ulmer, and E. Woerman: Temperature-oxygen fugacity tables for gas mixtures in system C-H-O at one atmosphere total pressure. Bulletin of Earth and Minerals Experimental Section, No. 88 (The Pennsylvania State University, University Park, PA, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahana, M.B., Shivashankar, S.A. Metalorganic chemical vapor deposition of highly oriented thin film composites of V2O5 and V6O13: Suppression of the metal–semiconductor transition in V6O13. Journal of Materials Research 19, 2859–2870 (2004). https://doi.org/10.1557/JMR.2004.0394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0394

Navigation