Skip to main content

Advertisement

Log in

Uniaxial Compressive Stress Dependence of the High-Field Dielectric and Piezoelectric Performance of Soft PZT Piezoceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of uniaxial prestress on dielectric and piezoelectric performance was studied for soft lead zirconate titanate piezoceramics. High electric field induced polarization and longitudinal/transverse strain were measured at different compression preload levels of up to −400 MPa. The parameters evaluated included polarization/strain outputs, dielectric permittivity, piezoelectric constants, and dissipation energy as a function of the mechanical preload and electric-field strength. The results indicate a significant enhancement of the dielectric and piezoelectric performance within a certain prestress loading range. At much higher stress levels, the predominant mechanical depolarization effect makes the material exhibit hardly any piezoeffect. However, the enhanced performance achieved by a small stress preload is accompanied by an unfavorable increased hysteresis, and consequently, increased energy loss, which is attributed to a larger extrinsic contribution due to more non-180° domain switching induced by the combined electromechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Akhras, Canadian Military Journal, Autumn, 25 (2000).

  2. B.P. Trease, M.S. Thesis, University of Michigan (2002).

  3. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).

  4. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  CAS  Google Scholar 

  5. K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000).

  6. N. Setter and R. Waser, Acta Mater. 48, 151 (2000).

    Article  CAS  Google Scholar 

  7. IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987 (IEEE, New York, 1988).

  8. C. Schuh, Th. Steinkopff, A. Wolff, and K. Lubitz, in Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, edited by C.S. Lynch, Proceedings of The Society of Photo-Optical Instrumentation Engineers, Newport Beach, CA, 3992, (2000) p. 165.

    Article  Google Scholar 

  9. V. Giurgiutiu and R. Pomirleanu, in Smart Structures and Materials 2001: Smart Structures and Integrated Systems, edited by L.P. Davis, Proceedings of The Society of Photo-Optical Instrumentation Engineers, Newport Beach, CA, 4327, (2001) p. 610.

    Article  Google Scholar 

  10. M. Mitrovic, G.P. Carman, and F.K. Straub, Int. J. Solids Struct. 38, 4357 (2001).

    Article  Google Scholar 

  11. T. Fett, S. Müller, D. Munz, and G. Thun, J. Mater. Sci. Lett. 17, 261 (1998).

    Article  CAS  Google Scholar 

  12. D. Viehland, F. Tito, E. McLaughlin, H. Robinson, R. Janus, L. Ewart, and J. Powers, J. Appl. Phys. 90, 1496 (2001).

    Article  CAS  Google Scholar 

  13. F.K. Straub and D.J. Merkley, in Smart Structures and Materials 1995: Smart Structures and Integrated Systems, edited by I. Chopra, Proceedings of The Society of Photo-Optical Instrumentation Engineers, San Diego, CA, 2443, (1995) p. 89.

    Article  Google Scholar 

  14. C.S. Lynch, Acta Mater. 44, 4137 (1996).

    Article  CAS  Google Scholar 

  15. B.K. Mukherjee, W. Ren, S-F. Liu, A.J. Masys, and G. Yang, in Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, edited by C.S. Lynch, Proceedings of The Society of Photo-Optical Instrumentation Engineers, Newport Beach, CA, 4333, (2001) p. 41.

    Article  CAS  Google Scholar 

  16. P.M. Chaplya and G.P. Carman, J. Appl. Phys. 90, 5278 (2001).

    Article  CAS  Google Scholar 

  17. J. Nuffer, D.C. Lupascu, and J. Rödel, Acta Mater. 48, 3783 (2000).

    Article  CAS  Google Scholar 

  18. D. Zhou, Ph.D. Thesis, University Karlsruhe (2003).

  19. D. Munz and T. Fett, Ceramics-Mechanical Properties, Failure Behaviour, Materials Selection, Springer Series in Materials Science, 36, (Springer-Verlag, Berlin, Germany, 1999).

  20. G. Yang, S-F. Liu, W. Ren, and B.K. Mukherjee, in Smart Structure and Materials 2000: Active Materials: Behaviour and Mechanics, edited by C.S. Lynch, Proceedings of The Society of Photo-Optical Instrumentation Engineers, Newport Beach, CA, 3992, (2000) p. 103.

    CAS  Google Scholar 

  21. Q.M. Zhang, W.Y. Pan, S.J. Jang, and L.E. Cross, J. Appl. Phys. 64, 6445 (1988).

    Article  CAS  Google Scholar 

  22. Q.M. Zhang, H. Wang, N. Kim, and L.E. Cross, J. Appl. Phys. 75, 454 (1994).

    Article  CAS  Google Scholar 

  23. G. Arlt, H. Dederichs, and R. Herbiet, Ferroelectrics 74, 37 (1987).

    Article  CAS  Google Scholar 

  24. D.E. Dausch, J. Am. Ceram. Soc. 80, 2355 (1997).

    Article  CAS  Google Scholar 

  25. T. Sakai, Y. Terai, and M. Ishikiriyama, Jpn. J. Appl. Phys. 34, 5276 (1995).

    Article  CAS  Google Scholar 

  26. D. Wang, Y. Fotinich, and G.P. Carman, J. Appl. Phys. 83, 5342 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Kamlah, M. & Munz, D. Uniaxial Compressive Stress Dependence of the High-Field Dielectric and Piezoelectric Performance of Soft PZT Piezoceramics. Journal of Materials Research 19, 834–842 (2004). https://doi.org/10.1557/jmr.2004.19.3.834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.3.834

Navigation